Search results
Results from the WOW.Com Content Network
Venus has an orbit with a semi-major axis of 0.723 au (108,200,000 km; 67,200,000 mi), and an eccentricity of 0.007. [1] [2] The low eccentricity and comparatively small size of its orbit give Venus the least range in distance between perihelion and aphelion of the planets: 1.46 million km.
A transit occurs when Venus reaches conjunction with the Sun whilst also passing through the Earth's orbital plane, and passes directly across the face of the Sun. [citation needed] [note 1] Sequences of transits usually repeat every 243 years, after which Venus and Earth have returned to nearly the same point in their respective orbits.
Venus is the second planet from the Sun, making a full orbit in about 224 days. Venus orbits the Sun at an average distance of about 0.72 AU (108 million km; 67 million mi), and completes an orbit every 224.7 days. It completes 13 orbits in 7.998 years, so its position in our sky almost repeats every eight years.
[19] [20] Planned orbit for the NASA Lunar Gateway in circa 2024, as a highly-elliptical seven-day near-rectilinear halo orbit around the Moon, which would bring the small space station within 3,000 kilometers (1,900 mi) of the lunar north pole at closest approach and as far away as 70,000 kilometers (43,000 mi) over the lunar south pole.
the orbit of Venus around the Sun; a cytherocentric orbit, orbit of an object around Venus; See also. Terrestrial orbit (disambiguation) Martian orbit (disambiguation)
The following outline is provided as an overview of and topical guide to Venus: . Venus – second planet from the Sun, orbiting it every 224.7 Earth days. It has the longest rotation period (243 days) of any planet in the Solar System and rotates in the opposite direction to most other planets.
The orbit of Venus is 224.7 Earth days (7.4 avg. Earth months [30.4 days]). The phases of Venus result from the planet's orbit around the Sun inside the Earth's orbit giving the telescopic observer a sequence of progressive lighting similar in appearance to the Moon's phases. It presents a full image when it is on the opposite side of the Sun.
The horizontal, or altitude-azimuth, system is based on the position of the observer on Earth, which revolves around its own axis once per sidereal day (23 hours, 56 minutes and 4.091 seconds) in relation to the star background. The positioning of a celestial object by the horizontal system varies with time, but is a useful coordinate system ...