Search results
Results from the WOW.Com Content Network
The y arc elasticity of x is defined as: , = % % where the percentage change in going from point 1 to point 2 is usually calculated relative to the midpoint: % = (+) /; % = (+) /. The use of the midpoint arc elasticity formula (with the midpoint used for the base of the change, rather than the initial point (x 1, y 1) which is used in almost all other contexts for calculating percentages) was ...
The compatibility conditions in linear elasticity are obtained by observing that there are six strain-displacement relations that are functions of only three unknown displacements. This suggests that the three displacements may be removed from the system of equations without loss of information.
The above measure of elasticity is sometimes referred to as the own-price elasticity of demand for a good, i.e., the elasticity of demand with respect to the good's own price, in order to distinguish it from the elasticity of demand for that good with respect to the change in the price of some other good, i.e., an independent, complementary, or ...
In economics, the price elasticity of demand refers to the elasticity of a demand function Q(P), and can be expressed as (dQ/dP)/(Q(P)/P) or the ratio of the value of the marginal function (dQ/dP) to the value of the average function (Q(P)/P). This relationship provides an easy way of determining whether a demand curve is elastic or inelastic ...
Formula for cross-price elasticity. Cross-price elasticity of demand (or cross elasticity of demand) measures the sensitivity between the quantity demanded in one good when there is a change in the price of another good. [17] As a common elasticity, it follows a similar formula to price elasticity of demand.
In physics and materials science, elasticity is the ability of a body to resist a distorting influence and to return to its original size and shape when that influence or force is removed. Solid objects will deform when adequate loads are applied to them; if the material is elastic, the object will return to its initial shape and size after ...
A general solution of these equations may be expressed in terms of the Beltrami stress tensor. Stress functions are derived as special cases of this Beltrami stress tensor which, although less general, sometimes will yield a more tractable method of solution for the elastic equations.
An example in microeconomics is the constant elasticity demand function, in which p is the price of a product and D(p) is the resulting quantity demanded by consumers.For most goods the elasticity r (the responsiveness of quantity demanded to price) is negative, so it can be convenient to write the constant elasticity demand function with a negative sign on the exponent, in order for the ...