enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Burgers vector - Wikipedia

    en.wikipedia.org/wiki/Burgers_vector

    The Burgers vector will be the vector to complete the circuit, i.e., from the start to the end of the circuit. [2] One can also use a counterclockwise Burgers circuit from a starting point to enclose the dislocation. The Burgers vector will instead be from the end to the start of the circuit (see picture above). [3]

  3. Slip (materials science) - Wikipedia

    en.wikipedia.org/wiki/Slip_(materials_science)

    Lattice configuration of the slip plane in a bcc material. The arrow represents the Burgers vector in this dislocation glide system. Slip in body-centered cubic (bcc) crystals occurs along the plane of shortest Burgers vector as well; however, unlike fcc, there are no truly close-packed planes in the bcc crystal structure. Thus, a slip system ...

  4. Cross slip - Wikipedia

    en.wikipedia.org/wiki/Cross_Slip

    The screw component of a mixed dislocation loop can move to another slip plane, called the cross-slip plane. Here the Burgers vector is along the intersection of the planes. In materials science, cross slip is the process by which a screw dislocation moves from one slip plane to another due to local stresses. It allows non-planar movement of ...

  5. Partial dislocation - Wikipedia

    en.wikipedia.org/wiki/Partial_dislocation

    A vector made from two Roman letters describes the Burgers vector of a perfect dislocation. If the vector is made from a Roman letter and a Greek letter, then it is a Frank partial if the letters are corresponding (Aα, Bβ,...) or a Shockley partial otherwise (Aβ, Aγ,...). Vectors made from two Greek letters describe stair-rod dislocations.

  6. File:Burgers Vector and dislocations (screw and edge type).svg

    en.wikipedia.org/wiki/File:Burgers_Vector_and...

    English: An illustration of the burgers vector in a screw and edge dislocation For more info, I highly recommend "The Physics of Semiconductors" by Marius Grundmann, DOI: 10.1007/978-3-642-13884-3 Date

  7. Superalloy - Wikipedia

    en.wikipedia.org/wiki/Superalloy

    A shape is designed and then converted into slices. These slices are sent to a laser writer to print the final product. In brief, a bed of metal powder is prepared, and a slice is formed in the powder bed by a high energy laser sintering the particles together. The powder bed moves downwards, and a new batch of metal powder is rolled over the top.

  8. Burgers material - Wikipedia

    en.wikipedia.org/wiki/Burgers_material

    A Burgers material is a viscoelastic material having the properties both of elasticity and viscosity. It is named after the Dutch physicist Johannes Martinus Burgers.

  9. Small-angle X-ray scattering - Wikipedia

    en.wikipedia.org/wiki/Small-angle_X-ray_scattering

    Small-angle X-ray scattering (SAXS) is a small-angle scattering technique by which nanoscale density differences in a sample can be quantified. This means that it can determine nanoparticle size distributions, resolve the size and shape of (monodisperse) macromolecules, determine pore sizes and characteristic distances of partially ordered materials. [1]