Search results
Results from the WOW.Com Content Network
In the figure, the processes 1-2-3 produce a work output, but processes from 3-4-1 require a smaller energy input to return to the starting position / state; so the net work is the difference between the two. This figure is highly idealized, in so far as all the lines are straight and the corners are right angles.
Thermodynamic work is one of the principal kinds of process by which a thermodynamic system can interact with and transfer energy to its surroundings. This results in externally measurable macroscopic forces on the system's surroundings, which can cause mechanical work, to lift a weight, for example, [1] or cause changes in electromagnetic, [2] [3] [4] or gravitational [5] variables.
Usage of N⋅m is discouraged by the SI authority, since it can lead to confusion as to whether the quantity expressed in newton-metres is a torque measurement, or a measurement of work. [15] Another unit for work is the foot-pound, which comes from the English system of measurement. As the unit name suggests, it is the product of pounds for ...
Compressor characteristic is a mathematical curve that shows the behaviour of a fluid going through a dynamic compressor.It shows changes in fluid pressure, temperature, entropy, flow rate etc.) with the compressor operating at different speeds.
Thus, half the work lifts the piston mass (work of gravity, or “useable” work), while the other half expands the surroundings. The results of these two process examples illustrate the difference between the fraction of heat converted to usable work (mgΔh) vs. the fraction converted to pressure-volume work done against the surrounding ...
The compressive forces may also be applied in multiple directions; for example inwards along the edges of a plate or all over the side surface of a cylinder, so as to reduce its area (biaxial compression), or inwards over the entire surface of a body, so as to reduce its volume.
In physics, the Young–Laplace equation (/ l ə ˈ p l ɑː s /) is an algebraic equation that describes the capillary pressure difference sustained across the interface between two static fluids, such as water and air, due to the phenomenon of surface tension or wall tension, although use of the latter is only applicable if assuming that the wall is very thin.
where (in SI units): q is the dynamic pressure in pascals (i.e., N/m 2, ρ (Greek letter rho) is the fluid mass density (e.g. in kg/m 3), and; u is the flow speed in m/s. It can be thought of as the fluid's kinetic energy per unit volume. For incompressible flow, the dynamic pressure of a fluid is the difference between its total pressure and ...