Search results
Results from the WOW.Com Content Network
Practical solutions of a ballistics problem often require considerations of air resistance, cross winds, target motion, acceleration due to gravity varying with height, and in such problems as launching a rocket from one point on the Earth to another, the horizon's distance vs curvature R of the Earth (its local speed of rotation () = ()).
The three-body problem is a special case of the n-body problem, which describes how n objects move under one of the physical forces, such as gravity. These problems have a global analytical solution in the form of a convergent power series, as was proven by Karl F. Sundman for n = 3 and by Qiudong Wang for n > 3 (see n-body problem for details
The following is a list of notable unsolved problems grouped into broad areas of physics. [1]Some of the major unsolved problems in physics are theoretical, meaning that existing theories seem incapable of explaining a certain observed phenomenon or experimental result.
Projectile or bullet length also affects limit cycle yaw. Longer projectiles experience more limit cycle yaw than shorter projectiles of the same diameter. Another feature of projectile design that has been identified as having an effect on the unwanted limit cycle yaw motion is the chamfer at the base of the projectile.
The Euler three-body problem is known by a variety of names, such as the problem of two fixed centers, the Euler–Jacobi problem, and the two-center Kepler problem. The exact solution, in the full three dimensional case, can be expressed in terms of Weierstrass's elliptic functions [2] For convenience, the problem may also be solved by ...
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
The first solution corresponds to when the projectile is first launched. The second solution is the useful one for determining the range of the projectile. Plugging this value for (t) into the horizontal equation yields = Applying the trigonometric identity
In physics, the monkey and hunter is a hypothetical scenario often used to illustrate the effect of gravity on projectile motion. [1] It can be presented as exercise problem or as a demonstration. The essentials of the problem are stated in many introductory guides to physics. [2] [3] In essence, the problem is as follows: