Search results
Results from the WOW.Com Content Network
Radial distance, typically denoted r or ρ , is the distance from the origin to a point along the radial dimension in a: Polar coordinate system;
The distance from the axis may be called the radial distance or radius, while the angular coordinate is sometimes referred to as the angular position or as the azimuth. The radius and the azimuth are together called the polar coordinates , as they correspond to a two-dimensional polar coordinate system in the plane through the point, parallel ...
calculation of () Radial distribution function for the Lennard-Jones model fluid at =, =.. In statistical mechanics, the radial distribution function, (or pair correlation function) () in a system of particles (atoms, molecules, colloids, etc.), describes how density varies as a function of distance from a reference particle.
The physics convention. Spherical coordinates (r, θ, φ) as commonly used: (ISO 80000-2:2019): radial distance r (slant distance to origin), polar angle θ (angle with respect to positive polar axis), and azimuthal angle φ (angle of rotation from the initial meridian plane). This is the convention followed in this article.
Radius of gyration (in polymer science)(, unit: nm or SI unit: m): For a macromolecule composed of mass elements, of masses , =1,2,…,, located at fixed distances from the centre of mass, the radius of gyration is the square-root of the mass average of over all mass elements, i.e.,
In the general time-independent case, the dynamics of a particle in a spherically symmetric potential are governed by a Hamiltonian of the following form: ^ = ^ + Here, is the mass of the particle, ^ is the momentum operator, and the potential () depends only on the vector magnitude of the position vector, that is, the radial distance from the ...
A radial function is a function : [,).When paired with a norm on a vector space ‖ ‖: [,), a function of the form = (‖ ‖) is said to be a radial kernel centered at .A radial function and the associated radial kernels are said to be radial basis functions if, for any finite set of nodes {} =, all of the following conditions are true:
Radial functions are contrasted with spherical functions, and any descent function (e.g., continuous and rapidly decreasing) on Euclidean space can be decomposed into a series consisting of radial and spherical parts: the solid spherical harmonic expansion. A function is radial if and only if it is invariant under all rotations leaving the ...