Search results
Results from the WOW.Com Content Network
Shoelace scheme for determining the area of a polygon with point coordinates (,),..., (,). The shoelace formula, also known as Gauss's area formula and the surveyor's formula, [1] is a mathematical algorithm to determine the area of a simple polygon whose vertices are described by their Cartesian coordinates in the plane. [2]
In calculus, the trapezoidal rule (also known as the trapezoid rule or trapezium rule) [a] is a technique for numerical integration, i.e., approximating the definite integral: (). The trapezoidal rule works by approximating the region under the graph of the function f ( x ) {\displaystyle f(x)} as a trapezoid and calculating its area.
one pair of parallel sides – a trapezium (τραπέζιον), divided into isosceles (equal legs) and scalene (unequal) trapezia; no parallel sides – trapezoid (τραπεζοειδή, trapezoeidé, literally 'trapezium-like' (εἶδος means 'resembles'), in the same way as cuboid means 'cube-like' and rhomboid means 'rhombus-like')
The above formula is known as the shoelace formula or the surveyor's formula. If we locate the vertices in the complex plane and denote them in counterclockwise sequence as a = x A + y A i , b = x B + y B i , and c = x C + y C i , and denote their complex conjugates as a ¯ {\displaystyle {\bar {a}}} , b ¯ {\displaystyle {\bar {b}}} , and c ...
Heron's formula can be obtained from Brahmagupta's formula or Bretschneider's formula by setting one of the sides of the quadrilateral to zero. Brahmagupta's formula gives the area K {\displaystyle K} of a cyclic quadrilateral whose sides have lengths a , {\displaystyle a,} b , {\displaystyle b,} c , {\displaystyle c ...
Here's everyone who skipped the 2025 Grammy Awards and why they decided to miss the event.
The formula for the area of a trapezoid can be simplified using Pitot's theorem to get a formula for the area of a tangential trapezoid. If the bases have lengths a, b, and any one of the other two sides has length c, then the area K is given by the formula [2] (This formula can be used only in cases where the bases are parallel.)
Any non-self-crossing quadrilateral with exactly one axis of symmetry must be either an isosceles trapezoid or a kite. [5] However, if crossings are allowed, the set of symmetric quadrilaterals must be expanded to include also the crossed isosceles trapezoids, crossed quadrilaterals in which the crossed sides are of equal length and the other sides are parallel, and the antiparallelograms ...