Search results
Results from the WOW.Com Content Network
Examples of line segments include the sides of a triangle or square. More generally, when both of the segment's end points are vertices of a polygon or polyhedron , the line segment is either an edge (of that polygon or polyhedron) if they are adjacent vertices, or a diagonal .
A vertex of an angle is the endpoint where two lines or rays come together. In geometry, a vertex (pl.: vertices or vertexes) is a point where two or more curves, lines, or edges meet or intersect. As a consequence of this definition, the point where two lines meet to form an angle and the corners of polygons and polyhedra are vertices. [1] [2] [3]
In elliptic geometry we see a typical example of this. [1]: 108 In the spherical representation of elliptic geometry, lines are represented by great circles of a sphere with diametrically opposite points identified. In a different model of elliptic geometry, lines are represented by Euclidean planes passing through the origin. Even though these ...
Common lines and line segments on a circle, including a chord in blue. A chord (from the Latin chorda, meaning "bowstring") of a circle is a straight line segment whose endpoints both lie on a circular arc.
A real interval can contain neither endpoint, either endpoint, or both endpoints, excluding any endpoint which is infinite. For example, the set of real numbers consisting of 0, 1, and all numbers in between is an interval, denoted [0, 1] and called the unit interval; the set of all positive real numbers is an interval, denoted (0, ∞); the ...
In Euclidean geometry, an angle or plane angle is the figure formed by two rays, called the sides of the angle, sharing a common endpoint, called the vertex of the angle. [1] Two intersecting curves may also define an angle, which is the angle of the rays lying tangent to the respective curves at their point of intersection.
In differential geometry, conjugate points or focal points [1] [2] are, roughly, points that can almost be joined by a 1-parameter family of geodesics. For example, on a sphere, the north-pole and south-pole are connected by any meridian. Another viewpoint is that conjugate points tell when the geodesics fail to be length-minimizing.
In an affine or Euclidean space of higher dimension, the points at infinity are the points which are added to the space to get the projective completion. [citation needed] The set of the points at infinity is called, depending on the dimension of the space, the line at infinity, the plane at infinity or the hyperplane at infinity, in all cases a projective space of one less dimension.