Search results
Results from the WOW.Com Content Network
Definition. The Bode plot for a linear, time-invariant system with transfer function ( being the complex frequency in the Laplace domain) consists of a magnitude plot and a phase plot. The Bode magnitude plot is the graph of the function of frequency (with being the imaginary unit). The -axis of the magnitude plot is logarithmic and the ...
The Bode plot for this type of filter resembles that of a first-order filter, except that it falls off more quickly. For example, a second-order Butterworth filter reduces the signal amplitude to one-fourth of its original level every time the frequency doubles (so power decreases by 12 dB per octave, or 40 dB per decade).
The Bode plot of a first-order low-pass filter. The frequency response of the Butterworth filter is maximally flat (i.e., has no ripples) in the passband and rolls off towards zero in the stopband. [2] When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative
Frequency response. In signal processing and electronics, the frequency response of a system is the quantitative measure of the magnitude and phase of the output as a function of input frequency. [1] The frequency response is widely used in the design and analysis of systems, such as audio and control systems, where they simplify mathematical ...
In electronics, cutoff frequency or corner frequency is the frequency either above or below which the power output of a circuit, such as a line, amplifier, or electronic filter has fallen to a given proportion of the power in the passband. Most frequently this proportion is one half the passband power, also referred to as the 3 dB point since a ...
Bode plot showing the concept of a decade: each major division on the horizontal axis is one decade Electronic frequency responses are often described in terms of "per decade". The example Bode plot shows a slope of −20 dB /decade in the stopband, which means that for every factor-of-ten increase in frequency (going from 10 rad/s to 100 rad/s ...
Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.
Analog signal processing is a type of signal processing conducted on continuous analog signals by some analog means (as opposed to the discrete digital signal processing where the signal processing is carried out by a digital process). "Analog" indicates something that is mathematically represented as a set of continuous values.