Search results
Results from the WOW.Com Content Network
The diode equation above is an example of an element constitutive equation of the general form, (,) = This can be thought of as a non-linear resistor. The corresponding constitutive equations for non-linear inductors and capacitors are respectively; (,) = (,) =
A series circuit with a voltage source (such as a battery, or in this case a cell) and three resistance units. Two-terminal components and electrical networks can be connected in series or parallel. The resulting electrical network will have two terminals, and itself can participate in a series or parallel topology.
The properties of the parallel RLC circuit can be obtained from the duality relationship of electrical circuits and considering that the parallel RLC is the dual impedance of a series RLC. Considering this, it becomes clear that the differential equations describing this circuit are identical to the general form of those describing a series RLC.
The resistance is measured after replacing all voltage- and current-sources with their internal resistances. That means an ideal voltage source is replaced with a short circuit, and an ideal current source is replaced with an open circuit. Resistance can then be calculated across the terminals using the formulae for series and parallel circuits ...
A simple electric circuit made up of a voltage source and a resistor. Here, =, according to Ohm's law. An electrical network is an interconnection of electrical components (e.g., batteries, resistors, inductors, capacitors, switches, transistors) or a model of such an interconnection, consisting of electrical elements (e.g., voltage sources, current sources, resistances, inductances ...
The parallel RC circuit is generally of less interest than the series circuit. This is largely because the output voltage V out is equal to the input voltage V in — as a result, this circuit does not act as a filter on the input signal unless fed by a current source .
Load regulation of a constant-voltage source is defined by the equation: [3] % = % Where: is the voltage at maximum load. The maximum load is the one that draws the greatest current, i.e. the lowest specified load resistance (never short circuit);
The circuit generates a high-voltage pulse by charging a number of capacitors in parallel, then suddenly connecting them in series. See the circuit diagram on the right. At first, n capacitors (C) are charged in parallel to a voltage V C by a DC power supply through the resistors (R C).