enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Object detection - Wikipedia

    en.wikipedia.org/wiki/Object_detection

    Objects detected with OpenCV's Deep Neural Network module (dnn) by using a YOLOv3 model trained on COCO dataset capable to detect objects of 80 common classes. Object detection is a computer technology related to computer vision and image processing that deals with detecting instances of semantic objects of a certain class (such as humans, buildings, or cars) in digital images and videos. [1]

  3. DeepFace - Wikipedia

    en.wikipedia.org/wiki/DeepFace

    DeepFace is a deep learning facial recognition system created by a research group at Facebook.It identifies human faces in digital images. The program employs a nine-layer neural network with over 120 million connection weights and was trained on four million images uploaded by Facebook users.

  4. Face detection - Wikipedia

    en.wikipedia.org/wiki/Face_detection

    Face detection is gaining the interest of marketers. A webcam can be integrated into a television and detect any face that walks by. The system then calculates the race, gender, and age range of the face. Once the information is collected, a series of advertisements can be played that is specific toward the detected race/gender/age.

  5. Higher-order singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Higher-order_singular...

    The power of the tensor framework was showcased by decomposing and representing an image in terms of its causal factors of data formation, in the context of Human Motion Signatures for gait recognition, [18] face recognition—TensorFaces [19] [20] and computer graphics—TensorTextures. [21]

  6. Triplet loss - Wikipedia

    en.wikipedia.org/wiki/Triplet_loss

    The loss function is defined using triplets of training points of the form (,,).In each triplet, (called an "anchor point") denotes a reference point of a particular identity, (called a "positive point") denotes another point of the same identity in point , and (called a "negative point") denotes an point of an identity different from the identity in point and .

  7. Facial recognition system - Wikipedia

    en.wikipedia.org/wiki/Facial_recognition_system

    Some face recognition algorithms identify facial features by extracting landmarks, or features, from an image of the subject's face. For example, an algorithm may analyze the relative position, size, and/or shape of the eyes, nose, cheekbones, and jaw. [36] These features are then used to search for other images with matching features. [37]

  8. FaceNet - Wikipedia

    en.wikipedia.org/wiki/FaceNet

    FaceNet is a facial recognition system developed by Florian Schroff, Dmitry Kalenichenko and James Philbina, a group of researchers affiliated with Google.The system was first presented at the 2015 IEEE Conference on Computer Vision and Pattern Recognition. [1]

  9. Haar-like feature - Wikipedia

    en.wikipedia.org/wiki/Haar-like_feature

    For example, with a human face, it is a common observation that among all faces the region of the eyes is darker than the region of the cheeks. Therefore, a common Haar feature for face detection is a set of two adjacent rectangles that lie above the eye and the cheek region.