Search results
Results from the WOW.Com Content Network
The circumcenter's position depends on the type of triangle: For an acute triangle (all angles smaller than a right angle), the circumcenter always lies inside the triangle. For a right triangle, the circumcenter always lies at the midpoint of the hypotenuse. This is one form of Thales' theorem.
Examples of cyclic quadrilaterals. In Euclidean geometry, a cyclic quadrilateral or inscribed quadrilateral is a quadrilateral whose vertices all lie on a single circle.This circle is called the circumcircle or circumscribed circle, and the vertices are said to be concyclic.
It has also rarely been called a double circle quadrilateral [2] and double scribed quadrilateral. [3] If two circles, one within the other, are the incircle and the circumcircle of a bicentric quadrilateral, then every point on the circumcircle is the vertex of a bicentric quadrilateral having the same incircle and circumcircle. [4]
In geometry, a triangle center or triangle centre is a point in the triangle's plane that is in some sense in the middle of the triangle. For example, the centroid, circumcenter, incenter and orthocenter were familiar to the ancient Greeks, and can be obtained by simple constructions.
[4] In the plane (d = 2), if there are b vertices on the convex hull, then any triangulation of the points has at most 2n – 2 – b triangles, plus one exterior face (see Euler characteristic). If points are distributed according to a Poisson process in the plane with constant intensity, then each vertex has on average six surrounding triangles.
The vertices of every triangle fall on a circle called the circumcircle. (Because of this, some authors define "concyclic" only in the context of four or more points on a circle.) [2] Several other sets of points defined from a triangle are also concyclic, with different circles; see Nine-point circle [3] and Lester's theorem.
Common nine-point circle, where N, O 4, A 4 are the nine-point center, circumcenter, and orthocenter respectively of the triangle formed from the other three orthocentric points A 1, A 2, A 3. The center of this common nine-point circle lies at the centroid of the four orthocentric points. The radius of the common nine-point circle is the ...
In geometry, the incenter–excenter lemma is the theorem that the line segment between the incenter and any excenter of a triangle, or between two excenters, is the diameter of a circle (an incenter–excenter or excenter–excenter circle) also passing through two triangle vertices with its center on the circumcircle.