enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Degenerate matter - Wikipedia

    en.wikipedia.org/wiki/Degenerate_matter

    While degeneracy pressure usually dominates at extremely high densities, it is the ratio between degenerate pressure and thermal pressure which determines degeneracy. Given a sufficiently drastic increase in temperature (such as during a red giant star's helium flash ), matter can become non-degenerate without reducing its density.

  3. Pauli exclusion principle - Wikipedia

    en.wikipedia.org/wiki/Pauli_exclusion_principle

    Astronomy provides a spectacular demonstration of the effect of the Pauli principle, in the form of white dwarf and neutron stars. In both bodies, the atomic structure is disrupted by extreme pressure, but the stars are held in hydrostatic equilibrium by degeneracy pressure, also known as Fermi pressure.

  4. Nuclear drip line - Wikipedia

    en.wikipedia.org/wiki/Nuclear_drip_line

    The boundaries of this valley are the neutron drip line on the neutron-rich side, and the proton drip line on the proton-rich side. [2] These limits exist because of particle decay, whereby an exothermic nuclear transition can occur by the emission of one or more nucleons (not to be confused with particle decay in particle physics).

  5. Fermi gas - Wikipedia

    en.wikipedia.org/wiki/Fermi_gas

    Using the Fermi gas as a model, it is possible to calculate the Chandrasekhar limit, i.e. the maximum mass any star may acquire (without significant thermally generated pressure) before collapsing into a black hole or a neutron star. The latter, is a star mainly composed of neutrons, where the collapse is also avoided by neutron degeneracy ...

  6. Chandrasekhar limit - Wikipedia

    en.wikipedia.org/wiki/Chandrasekhar_limit

    In the nonrelativistic case, electron degeneracy pressure gives rise to an equation of state of the form P = K 1 ρ 5/3, where P is the pressure, ρ is the mass density, and K 1 is a constant. Solving the hydrostatic equation leads to a model white dwarf that is a polytrope of index ⁠ 3 / 2 ⁠ – and therefore has radius inversely ...

  7. Inverse beta decay - Wikipedia

    en.wikipedia.org/wiki/Inverse_beta_decay

    During the formation of neutron stars, or in radioactive isotopes capable of electron capture, neutrons are created by electron capture: p + e − → n + ν e. This is similar to the inverse beta reaction in that a proton is changed to a neutron, but is induced by the capture of an electron instead of an antineutrino.

  8. Neutron activation - Wikipedia

    en.wikipedia.org/wiki/Neutron_activation

    Neutron activation is the only common way that a stable material can be induced into becoming intrinsically radioactive. All naturally occurring materials, including air, water, and soil, can be induced (activated) by neutron capture into some amount of radioactivity in varying degrees, as a result of the production of neutron-rich radioisotopes.

  9. Pressurized water reactor - Wikipedia

    en.wikipedia.org/wiki/Pressurized_water_reactor

    A pressurized water reactor (PWR) is a type of light-water nuclear reactor. PWRs constitute the large majority of the world's nuclear power plants (with notable exceptions being the UK, Japan, India and Canada). In a PWR, water is used both as a neutron moderator and as coolant fluid for the reactor core.