enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Regular icosahedron - Wikipedia

    en.wikipedia.org/wiki/Regular_icosahedron

    The regular icosahedron can also be constructed starting from a regular octahedron. All triangular faces of a regular octahedron are breaking, twisting at a certain angle, and filling up with other equilateral triangles. This process is known as snub, and the regular icosahedron is also known as snub octahedron. [5]

  3. Icosahedron - Wikipedia

    en.wikipedia.org/wiki/Icosahedron

    The convex regular icosahedron is usually referred to simply as the regular icosahedron, one of the five regular Platonic solids, and is represented by its Schläfli symbol {3, 5}, containing 20 triangular faces, with 5 faces meeting around each vertex. Its dual polyhedron is the regular dodecahedron {5, 3} having three regular pentagonal faces ...

  4. Dual uniform polyhedron - Wikipedia

    en.wikipedia.org/wiki/Dual_uniform_polyhedron

    The illustration here shows the vertex figure (red) of the cuboctahedron being used to derive the corresponding face (blue) of the rhombic dodecahedron.. For a uniform polyhedron, each face of the dual polyhedron may be derived from the original polyhedron's corresponding vertex figure by using the Dorman Luke construction. [2]

  5. Icosahedral honeycomb - Wikipedia

    en.wikipedia.org/wiki/Icosahedral_honeycomb

    The dihedral angle of a regular icosahedron is around 138.2°, so it is impossible to fit three icosahedra around an edge in Euclidean 3-space. However, in hyperbolic space, properly scaled icosahedra can have dihedral angles of exactly 120 degrees, so three of those can fit around an edge.

  6. Gyroelongated bipyramid - Wikipedia

    en.wikipedia.org/wiki/Gyroelongated_bipyramid

    Three members of the set can be deltahedra, that is, constructed entirely of equilateral triangles: the gyroelongated square bipyramid, a Johnson solid; the icosahedron, a Platonic solid; and the gyroelongated triangular bipyramid if it is made with equilateral triangles, but because it has coplanar faces is not strictly convex.

  7. Icosahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Icosahedral_symmetry

    Icosahedral symmetry fundamental domains A soccer ball, a common example of a spherical truncated icosahedron, has full icosahedral symmetry. Rotations and reflections form the symmetry group of a great icosahedron. In mathematics, and especially in geometry, an object has icosahedral symmetry if it has the same symmetries as a regular icosahedron.

  8. Solids with icosahedral symmetry - Wikipedia

    en.wikipedia.org/wiki/Solids_with_icosahedral...

    (quasi-regular: vertex- and edge-uniform) 32: 20 triangles 12 pentagons: 60: 30 3,5,3,5 truncated dodecahedron : 32: 20 triangles 12 decagons: 90 60 3,10,10 truncated icosahedron or commonly football (soccer ball) 32: 12 pentagons 20 hexagons: 90 60 5,6,6 rhombicosidodecahedron or small rhombicosidodecahedron 62: 20 triangles 30 squares

  9. Disdyakis triacontahedron - Wikipedia

    en.wikipedia.org/wiki/Disdyakis_triacontahedron

    In the above coordinates, the first 12 vertices form a regular icosahedron, the next 20 vertices (those with R) form a regular dodecahedron, and the last 30 vertices (those with S) form an icosidodecahedron. Normalizing all vertices to the unit sphere gives a spherical disdyakis triacontahedron, shown in the adjacent figure.