Search results
Results from the WOW.Com Content Network
In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.
The set of recursive languages is a subset of both RE and co-RE. [3] In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result.
An Enumerable Language is Turing Recognizable. It's very easy to construct a Turing Machine that recognizes the enumerable language . We can have two tapes. On one tape we take the input string and on the other tape, we run the enumerator to enumerate the strings in the language one after another.
A recursively enumerable language is a computably enumerable subset of a formal language. The set of all provable sentences in an effectively presented axiomatic system is a computably enumerable set. Matiyasevich's theorem states that every computably enumerable set is a Diophantine set (the converse is trivially true).
Thus the halting problem is an example of a computably enumerable (c.e.) set, which is a set that can be enumerated by a Turing machine (other terms for computably enumerable include recursively enumerable and semidecidable). Equivalently, a set is c.e. if and only if it is the range of some computable function.
A universal Turing machine can calculate any recursive function, decide any recursive language, and accept any recursively enumerable language. According to the Church–Turing thesis , the problems solvable by a universal Turing machine are exactly those problems solvable by an algorithm or an effective method of computation , for any ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The halting language is therefore recursively enumerable. It is possible to construct languages which are not even recursively enumerable, however. A simple example of such a language is the complement of the halting language; that is the language consisting of all Turing machines paired with input strings where the Turing machines do not halt ...