enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Recursively enumerable language - Wikipedia

    en.wikipedia.org/.../Recursively_enumerable_language

    In mathematics, logic and computer science, a formal language is called recursively enumerable (also recognizable, partially decidable, semidecidable, Turing-acceptable or Turing-recognizable) if it is a recursively enumerable subset in the set of all possible words over the alphabet of the language, i.e., if there exists a Turing machine which will enumerate all valid strings of the language.

  3. RE (complexity) - Wikipedia

    en.wikipedia.org/wiki/RE_(complexity)

    The set of recursive languages is a subset of both RE and co-RE. [3] In fact, it is the intersection of those two classes, because we can decide any problem for which there exists a recogniser and also a co-recogniser by simply interleaving them until one obtains a result.

  4. Chomsky hierarchy - Wikipedia

    en.wikipedia.org/wiki/Chomsky_hierarchy

    Note that the set of grammars corresponding to recursive languages is not a member of this hierarchy; these would be properly between Type-0 and Type-1. Every regular language is context-free, every context-free language is context-sensitive, every context-sensitive language is recursive and every recursive language is recursively enumerable.

  5. Computably enumerable set - Wikipedia

    en.wikipedia.org/wiki/Computably_enumerable_set

    A recursively enumerable language is a computably enumerable subset of a formal language. The set of all provable sentences in an effectively presented axiomatic system is a computably enumerable set. Matiyasevich's theorem states that every computably enumerable set is a Diophantine set (the converse is trivially true).

  6. Computability - Wikipedia

    en.wikipedia.org/wiki/Computability

    The halting language is therefore recursively enumerable. It is possible to construct languages which are not even recursively enumerable, however. A simple example of such a language is the complement of the halting language; that is the language consisting of all Turing machines paired with input strings where the Turing machines do not halt ...

  7. Craig's theorem - Wikipedia

    en.wikipedia.org/wiki/Craig's_theorem

    In mathematical logic, Craig's theorem (also known as Craig's trick [1]) states that any recursively enumerable set of well-formed formulas of a first-order language is (primitively) recursively axiomatizable. This result is not related to the well-known Craig interpolation theorem, although both results are named after the same logician ...

  8. Universal Turing machine - Wikipedia

    en.wikipedia.org/wiki/Universal_Turing_machine

    A universal Turing machine can calculate any recursive function, decide any recursive language, and accept any recursively enumerable language. According to the Church–Turing thesis , the problems solvable by a universal Turing machine are exactly those problems solvable by an algorithm or an effective method of computation , for any ...

  9. List of undecidable problems - Wikipedia

    en.wikipedia.org/wiki/List_of_undecidable_problems

    Though undecidable languages are not recursive languages, they may be subsets of Turing recognizable languages: i.e., such undecidable languages may be recursively enumerable. Many, if not most, undecidable problems in mathematics can be posed as word problems : determining when two distinct strings of symbols (encoding some mathematical ...