enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gaussian function - Wikipedia

    en.wikipedia.org/wiki/Gaussian_function

    Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.

  3. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...

  4. Multivariate normal distribution - Wikipedia

    en.wikipedia.org/wiki/Multivariate_normal...

    Hoyt distribution, the pdf of the vector length of a bivariate normally distributed vector (correlated and centered) Complex normal distribution, an application of bivariate normal distribution; Copula, for the definition of the Gaussian or normal copula model.

  5. Truncated normal distribution - Wikipedia

    en.wikipedia.org/wiki/Truncated_normal_distribution

    Chopin (2011) proposed an algorithm inspired from the Ziggurat algorithm of Marsaglia and Tsang (1984, 2000), which is usually considered as the fastest Gaussian sampler, and is also very close to Ahrens's algorithm (1995). Implementations can be found in C, C++, Matlab and Python.

  6. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    (⁡ >) is computed by transforming to the normal variable = ⁡, then integrating its density over the domain defined by ⁡ > (blue regions), using the numerical method of ray-tracing. [15] b & c. The pdf and cdf of the function ⁡ of the log-normal variable can also be computed in this way.

  7. Generalized normal distribution - Wikipedia

    en.wikipedia.org/wiki/Generalized_normal...

    The generalized normal log-likelihood function has infinitely many continuous derivates (i.e. it belongs to the class C ∞ of smooth functions) only if is a positive, even integer. Otherwise, the function has ⌊ β ⌋ {\displaystyle \textstyle \lfloor \beta \rfloor } continuous derivatives.

  8. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    In probability theory, a probability density function (PDF), density function, or density of an absolutely continuous random variable, is a function whose value at any given sample (or point) in the sample space (the set of possible values taken by the random variable) can be interpreted as providing a relative likelihood that the value of the ...

  9. Gaussian process - Wikipedia

    en.wikipedia.org/wiki/Gaussian_process

    A Gaussian process can be used as a prior probability distribution over functions in Bayesian inference. [7] [23] Given any set of N points in the desired domain of your functions, take a multivariate Gaussian whose covariance matrix parameter is the Gram matrix of your N points with some desired kernel, and sample from that Gaussian. For ...