enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Face diagonal - Wikipedia

    en.wikipedia.org/wiki/Face_diagonal

    In geometry, a face diagonal of a polyhedron is a diagonal on one of the faces, in contrast to a space diagonal passing through the interior of the polyhedron. [1] A cuboid has twelve face diagonals (two on each of the six faces), and it has four space diagonals. [2] The cuboid's face diagonals can have up to three different lengths, since the ...

  3. Space diagonal - Wikipedia

    en.wikipedia.org/wiki/Space_diagonal

    In geometry, a space diagonal (also interior diagonal or body diagonal) of a polyhedron is a line connecting two vertices that are not on the same face. Space diagonals contrast with face diagonals, which connect vertices on the same face (but not on the same edge) as each other. [1] For example, a pyramid has no space diagonals, while a cube ...

  4. Euler brick - Wikipedia

    en.wikipedia.org/wiki/Euler_brick

    One edge, face diagonal or space diagonal must be divisible by 29. One edge, face diagonal or space diagonal must be divisible by 37. In addition: The space diagonal is neither a prime power nor a product of two primes. [9]: p. 579 The space diagonal can only contain prime divisors that are congruent to 1 modulo 4. [9]: p. 566 [10]

  5. Diagonal - Wikipedia

    en.wikipedia.org/wiki/Diagonal

    The diagonals of a cube with side length 1. AC' (shown in blue) is a space diagonal with length , while AC (shown in red) is a face diagonal and has length .. In geometry, a diagonal is a line segment joining two vertices of a polygon or polyhedron, when those vertices are not on the same edge.

  6. Cube - Wikipedia

    en.wikipedia.org/wiki/Cube

    The diagonal of a matrix denotes the number of each element that appears in a polyhedron, whereas the non-diagonal of a matrix denotes the number of the column's elements that occur in or at the row's element. As mentioned above, the cube has eight vertices, twelve edges, and six faces; each element in a matrix's diagonal is denoted as 8, 12 ...

  7. Rhombic dodecahedron - Wikipedia

    en.wikipedia.org/wiki/Rhombic_dodecahedron

    The rhombic dodecahedron is a space-filling polyhedron, meaning it can be applied to tessellate three-dimensional space: it can be stacked to fill a space, much like hexagons fill a plane. It is a parallelohedron because it can be space-filling a honeycomb in which all of its copies meet face-to-face. [ 7 ]

  8. Parallelepiped - Wikipedia

    en.wikipedia.org/wiki/Parallelepiped

    One example has edges 271, 106, and 103, minor face diagonals 101, 266, and 255, major face diagonals 183, 312, and 323, and space diagonals 374, 300, 278, and 272. Some perfect parallelepipeds having two rectangular faces are known. But it is not known whether there exist any with all faces rectangular; such a case would be called a perfect ...

  9. List of space groups - Wikipedia

    en.wikipedia.org/wiki/List_of_space_groups

    There is also the n glide, which is a glide along the half of a diagonal of a face, and the d glide, which is along a quarter of either a face or space diagonal of the unit cell. The d glide is often called the diamond glide plane as it features in the diamond structure