enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    It was used in the world record calculations of 2.7 trillion digits of π in December 2009, [3] 10 trillion digits in October 2011, [4] [5] 22.4 trillion digits in November 2016, [6] 31.4 trillion digits in September 2018–January 2019, [7] 50 trillion digits on January 29, 2020, [8] 62.8 trillion digits on August 14, 2021, [9] 100 trillion ...

  3. Gauss–Legendre algorithm - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_algorithm

    The Gauss–Legendre algorithm is an algorithm to compute the digits of π. It is notable for being rapidly convergent, with only 25 iterations producing 45 million correct digits of π . However, it has some drawbacks (for example, it is computer memory -intensive) and therefore all record-breaking calculations for many years have used other ...

  4. Approximations of π - Wikipedia

    en.wikipedia.org/wiki/Approximations_of_π

    The software may be obtained from the Pi-Hacks Yahoo! forum, or from Stu's Pi page. Super PI by Kanada Laboratory [101] in the University of Tokyo is the program for Microsoft Windows for runs from 16,000 to 33,550,000 digits. It can compute one million digits in 40 minutes, two million digits in 90 minutes and four million digits in 220 ...

  5. Category:Pi algorithms - Wikipedia

    en.wikipedia.org/wiki/Category:Pi_algorithms

    Download QR code; Print/export Download as PDF; ... Pages in category "Pi algorithms" ... This page was last edited on 2 December 2020, ...

  6. Borwein's algorithm - Wikipedia

    en.wikipedia.org/wiki/Borwein's_algorithm

    The algorithm is not self-correcting; each iteration must be performed with the desired number of correct digits for π 's final result. One iteration of this algorithm is equivalent to two iterations of the Gauss–Legendre algorithm. A proof of these algorithms can be found here: [6]

  7. Super PI - Wikipedia

    en.wikipedia.org/wiki/Super_PI

    Super PI finishing a calculation of 1,048,576, or 2 20 digits of pi. Super PI is a computer program that calculates pi to a specified number of digits after the decimal point—up to a maximum of 32 million. It uses Gauss–Legendre algorithm and is a Windows port of the program used by Yasumasa Kanada in 1995 to compute pi to 2 32 digits.

  8. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    is the number of collisions made (in ideal conditions, perfectly elastic with no friction) by an object of mass m initially at rest between a fixed wall and another object of mass b 2N m, when struck by the other object. [1] (This gives the digits of π in base b up to N digits past the radix point.)

  9. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    One important application is verifying computations of all digits of pi performed by other means. Rather than having to compute all of the digits twice by two separate algorithms to ensure that a computation is correct, the final digits of a very long all-digits computation can be verified by the much faster Bellard's formula. [3] Formula: