enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Implicit surface - Wikipedia

    en.wikipedia.org/wiki/Implicit_surface

    For a plane, a sphere, and a torus there exist simple parametric representations. This is not true for the fourth example. The implicit function theorem describes conditions under which an equation (,,) = can be solved (at least implicitly) for x, y or z. But in general the solution may not be made explicit.

  3. Tangent lines to circles - Wikipedia

    en.wikipedia.org/wiki/Tangent_lines_to_circles

    If = + is the distance from c 1 to c 2 we can normalize by =, =, = to simplify equation (1), resulting in the following system of equations: + =, + =; solve these to get two solutions (k = ±1) for the two external tangent lines: = = + = (+) Geometrically this corresponds to computing the angle formed by the tangent lines and the line of ...

  4. Tangent - Wikipedia

    en.wikipedia.org/wiki/Tangent

    The tangent plane to a surface at a given point p is defined in an analogous way to the tangent line in the case of curves. It is the best approximation of the surface by a plane at p , and can be obtained as the limiting position of the planes passing through 3 distinct points on the surface close to p as these points converge to p .

  5. Tangential angle - Wikipedia

    en.wikipedia.org/wiki/Tangential_angle

    In geometry, the tangential angle of a curve in the Cartesian plane, at a specific point, is the angle between the tangent line to the curve at the given point and the x-axis. [1] (Some authors define the angle as the deviation from the direction of the curve at some fixed starting point.

  6. Parametric surface - Wikipedia

    en.wikipedia.org/wiki/Parametric_surface

    The tangent plane at a regular point is the affine plane in R 3 spanned by these vectors and passing through the point r(u, v) on the surface determined by the parameters. Any tangent vector can be uniquely decomposed into a linear combination of r u {\displaystyle \mathbf {r} _{u}} and r v . {\displaystyle \mathbf {r} _{v}.}

  7. Envelope (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Envelope_(mathematics)

    Finally we calculate E 3. Every point in the plane has at least one tangent line to γ passing through it, and so region filled by the tangent lines is the whole plane. The boundary E 3 is therefore the empty set. Indeed, consider a point in the plane, say (x 0,y 0). This point lies on a tangent line if and only if there exists a t such that

  8. First fundamental form - Wikipedia

    en.wikipedia.org/wiki/First_fundamental_form

    The Gaussian curvature of a surface is given by = =, where L, M, and N are the coefficients of the second fundamental form. Theorema egregium of Gauss states that the Gaussian curvature of a surface can be expressed solely in terms of the first fundamental form and its derivatives, so that K is in fact an intrinsic invariant of the surface.

  9. Problem of Apollonius - Wikipedia

    en.wikipedia.org/wiki/Problem_of_Apollonius

    The same holds true for a line and a circle. Two distinct lines cannot be tangent in the plane, although two parallel lines can be considered as tangent at a point at infinity in inversive geometry (see below). [5] [6] The solution circle may be either internally or externally tangent to each of the given circles.