Search results
Results from the WOW.Com Content Network
The researchers used a year of observations by the Dark Energy Spectroscopic Instrument (DESI) at Kitt Peak National Observatory in Arizona, which can capture light from 5,000 galaxies simultaneously.
Under this scenario, dark energy would ultimately tear apart all gravitationally bound structures, including galaxies and solar systems, and eventually overcome the electrical and nuclear forces to tear apart atoms themselves, ending the universe in a "Big Rip". On the other hand, dark energy might dissipate with time or even become attractive.
Dark energy is one of the greatest mysteries in science today. One of the simplest explanations is that it is a “cosmological constant” – a result of the energy of empty space itself – an ...
Dark energy does not exist, some scientists have claimed – which could help get rid of one of the universe’s biggest mysteries. For a century, scientists have thought that the universe was ...
The measured dark energy density is Ω Λ ≈ 0.690; the observed ordinary (baryonic) matter energy density is Ω b ≈ 0.0482 and the energy density of radiation is negligible. This leaves a missing Ω dm ≈ 0.258 which nonetheless behaves like matter (see technical definition section above) – dark matter.
Dark energy dominates the total energy (74%) while dark matter (22%) constitutes most of the mass. Of the remaining baryonic matter (4%), only one tenth is compact. In February 2015, the European-led research team behind the Planck cosmology probe released new data refining these values to 4.9% ordinary matter, 25.9% dark matter and 69.1% dark ...
The simultaneous existence of the largest-known voids and galaxy clusters requires about 70% dark energy in the universe today, consistent with the latest data from the cosmic microwave background. [5] Voids act as bubbles in the universe that are sensitive to background cosmological changes.
The Dark Energy Survey (DES) is an astronomical survey designed to constrain the properties of dark energy. It uses images taken in the near- ultraviolet , visible , and near- infrared to measure the expansion of the universe using Type Ia supernovae , baryon acoustic oscillations , the number of galaxy clusters , and weak gravitational lensing ...