enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Riemannian manifold - Wikipedia

    en.wikipedia.org/wiki/Riemannian_manifold

    A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.

  3. Differentiable manifold - Wikipedia

    en.wikipedia.org/wiki/Differentiable_manifold

    Differentiable functions between two manifolds are needed in order to formulate suitable notions of submanifolds, and other related concepts. If f : M → N is a differentiable function from a differentiable manifold M of dimension m to another differentiable manifold N of dimension n, then the differential of f is a mapping df : TM → TN.

  4. Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/Riemannian_geometry

    Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.

  5. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    The notion of a directional derivative of a function from multivariable calculus is extended to the notion of a covariant derivative of a tensor. Many concepts of analysis and differential equations have been generalized to the setting of Riemannian manifolds. A distance-preserving diffeomorphism between Riemannian manifolds is called an isometry.

  6. List of formulas in Riemannian geometry - Wikipedia

    en.wikipedia.org/wiki/List_of_formulas_in...

    Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...

  7. Manifold - Wikipedia

    en.wikipedia.org/wiki/Manifold

    In order to discuss such properties for a manifold, one needs to specify further structure and consider differentiable manifolds and Riemannian manifolds discussed below. In particular, the same underlying topological manifold can have several mutually incompatible classes of differentiable functions and an infinite number of ways to specify ...

  8. Distribution (differential geometry) - Wikipedia

    en.wikipedia.org/wiki/Distribution_(differential...

    Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, including integrable systems, Poisson geometry, non-commutative geometry, sub-Riemannian geometry, differential topology.

  9. Yamabe problem - Wikipedia

    en.wikipedia.org/wiki/Yamabe_problem

    The Yamabe problem refers to a conjecture in the mathematical field of differential geometry, which was resolved in the 1980s. It is a statement about the scalar curvature of Riemannian manifolds: Let (M,g) be a closed smooth Riemannian manifold.