Search results
Results from the WOW.Com Content Network
Riemannian geometry is the branch of differential geometry that studies Riemannian manifolds, defined as smooth manifolds with a Riemannian metric (an inner product on the tangent space at each point that varies smoothly from point to point). This gives, in particular, local notions of angle, length of curves, surface area and volume.
Let be a smooth manifold and let be a one-parameter family of Riemannian or pseudo-Riemannian metrics. Suppose that it is a differentiable family in the sense that for any smooth coordinate chart, the derivatives v i j = ∂ ∂ t ( ( g t ) i j ) {\displaystyle v_{ij}={\frac {\partial }{\partial t}}{\big (}(g_{t})_{ij}{\big )}} exist and are ...
A Riemannian manifold is a differentiable manifold in which each tangent space is equipped with an inner product , in a manner which varies smoothly from point to point. Given two tangent vectors u {\displaystyle u} and v {\displaystyle v} , the inner product u , v {\displaystyle \langle u,v\rangle } gives a real number.
Many concepts of analysis and differential equations have been generalized to the setting of Riemannian manifolds. A distance-preserving diffeomorphism between Riemannian manifolds is called an isometry. This notion can also be defined locally, i.e. for small neighborhoods of points. Any two regular curves are locally isometric.
A Riemannian manifold is a smooth manifold together with a Riemannian metric. The techniques of differential and integral calculus are used to pull geometric data out of the Riemannian metric. For example, integration leads to the Riemannian distance function, whereas differentiation is used to define curvature and parallel transport.
A differentiable manifold (of class C k) consists of a pair (M, O M) where M is a second countable Hausdorff space, and O M is a sheaf of local R-algebras defined on M, such that the locally ringed space (M, O M) is locally isomorphic to (R n, O). In this way, differentiable manifolds can be thought of as schemes modeled on R n.
The Riemannian connection or Levi-Civita connection [9] is perhaps most easily understood in terms of lifting vector fields, considered as first order differential operators acting on functions on the manifold, to differential operators on sections of the frame bundle. In the case of an embedded surface, this lift is very simply described in ...
Distributions satisfying a further integrability condition give rise to foliations, i.e. partitions of the manifold into smaller submanifolds. These notions have several applications in many fields of mathematics, including integrable systems, Poisson geometry, non-commutative geometry, sub-Riemannian geometry, differential topology.