enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Friction - Wikipedia

    en.wikipedia.org/wiki/Friction

    For example, a curling stone sliding along the ice experiences a kinetic force slowing it down. For an example of potential movement, the drive wheels of an accelerating car experience a frictional force pointing forward; if they did not, the wheels would spin, and the rubber would slide backwards along the pavement.

  3. Sliding (motion) - Wikipedia

    en.wikipedia.org/wiki/Sliding_(motion)

    Sliding friction (also called kinetic friction) is a contact force that resists the sliding motion of two objects or an object and a surface. Sliding friction is almost always less than that of static friction; this is why it is easier to move an object once it starts moving rather than to get the object to begin moving from a rest position.

  4. Free body diagram - Wikipedia

    en.wikipedia.org/wiki/Free_body_diagram

    Free body and kinetic diagrams of an inclined block. In dynamics a kinetic diagram is a pictorial device used in analyzing mechanics problems when there is determined to be a net force and/or moment acting on a body. They are related to and often used with free body diagrams, but depict only the net force and moment rather than all of the ...

  5. Frictional contact mechanics - Wikipedia

    en.wikipedia.org/wiki/Frictional_contact_mechanics

    A difference to dynamic sliding contact problems is that there is more variety in the state of different surface particles. Whereas the contact patch in a sliding problem continuously consists of more or less the same particles, in a rolling contact problem particles enter and leave the contact patch incessantly.

  6. Kinematics - Wikipedia

    en.wikipedia.org/wiki/Kinematics

    The formula for the acceleration A P can now be obtained as: = ˙ + + (), or = / + / +, where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; / =, is the relative position vector (the position of P relative to the origin O of the moving frame M); and = ¨ is the acceleration of the origin of ...

  7. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    The simplest example is a massive point particle, the Lagrangian for which can be written as the difference between its kinetic and potential energies: (, ˙) =, where the kinetic energy is = ˙ and the potential energy is some function of the position, ().

  8. Coulomb damping - Wikipedia

    en.wikipedia.org/wiki/Coulomb_damping

    Coulomb damping dissipates energy constantly because of sliding friction. The magnitude of sliding friction is a constant value; independent of surface area, displacement or position, and velocity. The system undergoing Coulomb damping is periodic or oscillating and restrained by the sliding friction.

  9. Darcy friction factor formulae - Wikipedia

    en.wikipedia.org/wiki/Darcy_friction_factor_formulae

    Churchill equation [24] (1977) is the only equation that can be evaluated for very slow flow (Reynolds number < 1), but the Cheng (2008), [25] and Bellos et al. (2018) [8] equations also return an approximately correct value for friction factor in the laminar flow region (Reynolds number < 2300). All of the others are for transitional and ...