enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Trigonometric substitution - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_substitution

    For a definite integral, one must figure out how the bounds of integration change. For example, as x {\displaystyle x} goes from 0 {\displaystyle 0} to a / 2 , {\displaystyle a/2,} then sin ⁡ θ {\displaystyle \sin \theta } goes from 0 {\displaystyle 0} to 1 / 2 , {\displaystyle 1/2,} so θ {\displaystyle \theta } goes from 0 {\displaystyle 0 ...

  3. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Then | | = ⁡ (()) +, where sgn(x) is the sign function, which takes the values −1, 0, 1 when x is respectively negative, zero or positive. This can be proved by computing the derivative of the right-hand side of the formula, taking into account that the condition on g is here for insuring the continuity of the integral.

  4. Gaussian integral - Wikipedia

    en.wikipedia.org/wiki/Gaussian_integral

    A different technique, which goes back to Laplace (1812), [3] is the following. Let = =. Since the limits on s as y → ±∞ depend on the sign of x, it simplifies the calculation to use the fact that e −x 2 is an even function, and, therefore, the integral over all real numbers is just twice the integral from zero to infinity.

  5. List of integrals of trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    For antiderivatives involving both exponential and trigonometric functions, see List of integrals of exponential functions. For a complete list of antiderivative functions, see Lists of integrals. For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1]

  6. Integral - Wikipedia

    en.wikipedia.org/wiki/Integral

    As another example, to find the area of the region bounded by the graph of the function f(x) = between x = 0 and x = 1, one can divide the interval into five pieces (0, 1/5, 2/5, ..., 1), then construct rectangles using the right end height of each piece (thus √ 0, √ 1/5, √ 2/5, ..., √ 1) and sum their areas to get the approximation

  7. Common integrals in quantum field theory - Wikipedia

    en.wikipedia.org/wiki/Common_integrals_in...

    Common integrals in quantum field theory are all variations and generalizations of Gaussian integrals to the complex plane and to multiple dimensions. [1]: 13–15 Other integrals can be approximated by versions of the Gaussian integral. Fourier integrals are also considered.

  8. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    If f(x) is a smooth function integrated over a small number of dimensions, and the domain of integration is bounded, there are many methods for approximating the integral to the desired precision. Numerical integration has roots in the geometrical problem of finding a square with the same area as a given plane figure ( quadrature or squaring ...

  9. List of integrals of inverse hyperbolic functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.