Search results
Results from the WOW.Com Content Network
Because modular exponentiation is an important operation in computer science, and there are efficient algorithms (see above) that are much faster than simply exponentiating and then taking the remainder, many programming languages and arbitrary-precision integer libraries have a dedicated function to perform modular exponentiation: Python's ...
The modular inverse of aR mod N is REDC((aR mod N) −1 (R 3 mod N)). Modular exponentiation can be done using exponentiation by squaring by initializing the initial product to the Montgomery representation of 1, that is, to R mod N, and by replacing the multiply and square steps by Montgomery multiplies.
The method is based on the observation that, for any integer >, one has: = {() /, /,. If the exponent n is zero then the answer is 1. If the exponent is negative then we can reuse the previous formula by rewriting the value using a positive exponent.
The Tonelli–Shanks algorithm (referred to by Shanks as the RESSOL algorithm) is used in modular arithmetic to solve for r in a congruence of the form r 2 ≡ n (mod p), where p is a prime: that is, to find a square root of n modulo p.
RSA and Diffie–Hellman use modular exponentiation. In computer algebra, modular arithmetic is commonly used to limit the size of integer coefficients in intermediate calculations and data. It is used in polynomial factorization, a problem for which all known efficient algorithms use modular arithmetic.
Regardless of the specific algorithm used, this operation is called modular exponentiation. For example, consider Z 17 ×. To compute 3 4 in this group, compute 3 4 = 81, and then divide 81 by 17, obtaining a remainder of 13. Thus 3 4 = 13 in the group Z 17 ×. The discrete logarithm is just the inverse operation.
By making a modular multiplicative inverse table for the finite field and doing a lookup. By mapping to a composite field where inversion is simpler, and mapping back. By constructing a special integer (in case of a finite field of a prime order) or a special polynomial (in case of a finite field of a non-prime order) and dividing it by a .
Exponentiation with Montgomery reduction O ( M ( n ) k ) {\displaystyle O(M(n)\,k)} On stronger computational models, specifically a pointer machine and consequently also a unit-cost random-access machine it is possible to multiply two n -bit numbers in time O ( n ).