Search results
Results from the WOW.Com Content Network
Besides support of factoring, algebraic number theory, and analysis of elliptic curves, it works with mathematical objects like matrices, polynomials, power series, algebraic numbers, and transcendental functions. [3] Originally developed by Henri Cohen et al at Université Bordeaux I, France, it now is GPL software. The gp interactive shell ...
MATLAB is a widely used proprietary software for performing numerical computations. [1] [2] [3] It comes with its own programming language, in which numerical algorithms can be implemented. GNU MCSim a simulation and numerical integration package, with fast Monte Carlo and Markov chain Monte Carlo capabilities.
MATLAB (an abbreviation of "MATrix LABoratory" [22]) is a proprietary multi-paradigm programming language and numeric computing environment developed by MathWorks.MATLAB allows matrix manipulations, plotting of functions and data, implementation of algorithms, creation of user interfaces, and interfacing with programs written in other languages.
Magma contains asymptotically fast algorithms for all fundamental dense matrix operations, such as Strassen multiplication. Sparse matrices Magma contains the structured Gaussian elimination and Lanczos algorithms for reducing sparse systems which arise in index calculus methods, while Magma uses Markowitz pivoting for several other sparse ...
Programming languages that support arbitrary precision computations, either built-in, or in the standard library of the language: Ada: the upcoming Ada 202x revision adds the Ada.Numerics.Big_Numbers.Big_Integers and Ada.Numerics.Big_Numbers.Big_Reals packages to the standard library, providing arbitrary precision integers and real numbers.
Matrix multiplication is thus a basic tool of linear algebra, and as such has numerous applications in many areas of mathematics, as well as in applied mathematics, statistics, physics, economics, and engineering. [3] [4] Computing matrix products is a central operation in all computational applications of linear algebra.
In mathematics, every analytic function can be used for defining a matrix function that maps square matrices with complex entries to square matrices of the same size. This is used for defining the exponential of a matrix , which is involved in the closed-form solution of systems of linear differential equations .
In the first step we distribute the input matrices between the processors based on the previous rule. In the next iterations we choose a new k' := (k + 1) mod n for every processor. This way every processor will continue accessing different values of the matrices. The needed data is then always at the neighbour processors.