Search results
Results from the WOW.Com Content Network
For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3. Similarly 10, 5, 2.5, 1.25, ... is a geometric sequence with a common ratio of 1/2. Examples of a geometric sequence are powers r k of a fixed non-zero number r, such as 2 k and 3 k. The general form of a geometric sequence is
The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .
This list of mathematical series contains formulae for finite and infinite sums. It can be used in conjunction with other tools for evaluating sums. Here, is taken to have the value
The nth element of an arithmetico-geometric sequence is the product of the nth element of an arithmetic sequence and the nth element of a geometric sequence. [1] An arithmetico-geometric series is a sum of terms that are the elements of an arithmetico-geometric sequence. Arithmetico-geometric sequences and series arise in various applications ...
When every term of a series is a non-negative real number, for instance when the terms are the absolute values of another series of real numbers or complex numbers, the sequence of partial sums is non-decreasing. Therefore a series with non-negative terms converges if and only if the sequence of partial sums is bounded, and so finding a bound ...
The maximum number of pieces, p obtainable with n straight cuts is the n-th triangular number plus one, forming the lazy caterer's sequence (OEIS A000124) One way of calculating the depreciation of an asset is the sum-of-years' digits method , which involves finding T n , where n is the length in years of the asset's useful life.
The number of ways of writing n as an ordered sum in which no term is 2 is P(2n − 2). For example, P(6) = 4, and there are 4 ways to write 4 as an ordered sum in which no term is 2: 4 ; 1 + 3 ; 3 + 1 ; 1 + 1 + 1 + 1. The number of ways of writing n as a palindromic ordered sum in which no term is 2 is P(n).
where λ is the average number of occurrences in any time interval of length 1. Observe that the event { X t ≥ x} is the same as the event { T x ≤ t }, and thus they have the same probability. Intuitively, if something occurs at least x {\displaystyle x} times before time t {\displaystyle t} , we have to wait at most t {\displaystyle t} for ...