Search results
Results from the WOW.Com Content Network
Throughout this article, boldfaced unsubscripted and are used to refer to random vectors, and Roman subscripted and are used to refer to scalar random variables.. If the entries in the column vector = (,, …,) are random variables, each with finite variance and expected value, then the covariance matrix is the matrix whose (,) entry is the covariance [1]: 177 ...
With any number of random variables in excess of 1, the variables can be stacked into a random vector whose i th element is the i th random variable. Then the variances and covariances can be placed in a covariance matrix, in which the (i, j) element is the covariance between the i th random variable and the j th one.
The correlation matrix is symmetric because the correlation between and is the same as the correlation between and . A correlation matrix appears, for example, in one formula for the coefficient of multiple determination , a measure of goodness of fit in multiple regression .
Matrix-free conjugate gradient method has been applied in the non-linear elasto-plastic finite element solver. [7] Solving these equations requires the calculation of the Jacobian which is costly in terms of CPU time and storage. To avoid this expense, matrix-free methods are employed.
Pearson's correlation coefficient is the covariance of the two variables divided by the product of their standard deviations. The form of the definition involves a "product moment", that is, the mean (the first moment about the origin) of the product of the mean-adjusted random variables; hence the modifier product-moment in the name.
The (potentially time-dependent) autocorrelation matrix (also called second moment) of a (potentially time-dependent) random vector = (, …,) is an matrix containing as elements the autocorrelations of all pairs of elements of the random vector .
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Correlation matrix — a symmetric n×n matrix, formed by the pairwise correlation coefficients of several random variables. Covariance matrix — a symmetric n×n matrix, formed by the pairwise covariances of several random variables. Sometimes called a dispersion matrix. Dispersion matrix — another name for a covariance matrix.