enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Line graph - Wikipedia

    en.wikipedia.org/wiki/Line_graph

    In the mathematical discipline of graph theory, the line graph of an undirected graph G is another graph L(G) that represents the adjacencies between edges of G. L(G) is constructed in the following way: for each edge in G, make a vertex in L(G); for every two edges in G that have a vertex in common, make an edge between their corresponding vertices in L(G).

  3. Line (geometry) - Wikipedia

    en.wikipedia.org/wiki/Line_(geometry)

    The word line may also refer, in everyday life, to a line segment, which is a part of a line delimited by two points (its endpoints). Euclid's Elements defines a straight line as a "breadthless length" that "lies evenly with respect to the points on itself", and introduced several postulates as basic unprovable properties on which the rest of ...

  4. Euclidean geometry - Wikipedia

    en.wikipedia.org/wiki/Euclidean_geometry

    Euclidean geometry is a mathematical system attributed to ancient Greek mathematician Euclid, which he described in his textbook on geometry, Elements.Euclid's approach consists in assuming a small set of intuitively appealing axioms (postulates) and deducing many other propositions from these.

  5. Euclid's Elements - Wikipedia

    en.wikipedia.org/wiki/Euclid's_Elements

    Euclid's axiomatic approach and constructive methods were widely influential. Many of Euclid's propositions were constructive, demonstrating the existence of some figure by detailing the steps he used to construct the object using a compass and straightedge. His constructive approach appears even in his geometry's postulates, as the first and ...

  6. Curve - Wikipedia

    en.wikipedia.org/wiki/Curve

    For example, in Book I of Euclid's Elements, a line is defined as a "breadthless length" (Def. 2), while a straight line is defined as "a line that lies evenly with the points on itself" (Def. 4). Euclid's idea of a line is perhaps clarified by the statement "The extremities of a line are points," (Def. 3). [3]

  7. Geometric graph theory - Wikipedia

    en.wikipedia.org/wiki/Geometric_graph_theory

    Geometric graph theory in the broader sense is a large and amorphous subfield of graph theory, concerned with graphs defined by geometric means. In a stricter sense, geometric graph theory studies combinatorial and geometric properties of geometric graphs, meaning graphs drawn in the Euclidean plane with possibly intersecting straight-line edges, and topological graphs, where the edges are ...

  8. Euclid - Wikipedia

    en.wikipedia.org/wiki/Euclid

    Euclid (/ ˈ j uː k l ɪ d /; Ancient Greek: Εὐκλείδης; fl. 300 BC) was an ancient Greek mathematician active as a geometer and logician. [2] Considered the "father of geometry", [3] he is chiefly known for the Elements treatise, which established the foundations of geometry that largely dominated the field until the early 19th century.

  9. Synthetic geometry - Wikipedia

    en.wikipedia.org/wiki/Synthetic_geometry

    Euclid's original treatment remained unchallenged for over two thousand years, until the simultaneous discoveries of the non-Euclidean geometries by Gauss, Bolyai, Lobachevsky and Riemann in the 19th century led mathematicians to question Euclid's underlying assumptions. [3] One of the early French analysts summarized synthetic geometry this way: