enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Cardiac action potential - Wikipedia

    en.wikipedia.org/wiki/Cardiac_action_potential

    The slope of phase 0 on the action potential waveform (see figure 2) represents the maximum rate of voltage change of the cardiac action potential and is known as dV/dt max. In pacemaker cells (e.g. sinoatrial node cells), however, the increase in membrane voltage is mainly due to activation of L-type calcium channels.

  3. Cardiac transient outward potassium current - Wikipedia

    en.wikipedia.org/wiki/Cardiac_transient_outward...

    The cardiac action potential has five phases. I to1 is active during phase 1, causing a fast repolarization of the action potential. The cardiac transient outward potassium current (referred to as I to1 or I to [1]) is one of the ion currents across the cell membrane of heart muscle cells.

  4. Ventricular action potential - Wikipedia

    en.wikipedia.org/wiki/Ventricular_action_potential

    The action potential of a ventricular myocyte. In electrocardiography, the ventricular cardiomyocyte membrane potential is about −90 mV at rest, [1] which is close to the potassium reversal potential. When an action potential is generated, the membrane potential rises above this level in five distinct phases. [1]

  5. Cardiac pacemaker - Wikipedia

    en.wikipedia.org/wiki/Cardiac_pacemaker

    There are three main stages in the generation of an action potential in a pacemaker cell. Since the stages are analogous to contraction of cardiac muscle cells, they have the same naming system. This can lead to some confusion as phases one and two are absent, leaving only phases zero, three, and four.

  6. Action potential - Wikipedia

    en.wikipedia.org/wiki/Action_potential

    In muscle cells, a typical action potential lasts about a fifth of a second. ... Phases of a cardiac action potential. The sharp rise in voltage ("0") corresponds to ...

  7. Pacemaker potential - Wikipedia

    en.wikipedia.org/wiki/Pacemaker_potential

    The cardiac pacemaker is the heart's natural rhythm generator. It employs pacemaker cells that generate electrical impulses, known as cardiac action potentials.These potentials cause the cardiac muscle to contract, and the rate of which these muscles contract determines the heart rate.

  8. Refractory period (physiology) - Wikipedia

    en.wikipedia.org/wiki/Refractory_period_(physiology)

    Unlike that in nerve cells, the cardiac action potential duration is closer to 100 ms (with variations depending on cell type, autonomic tone, etc.). After an action potential initiates, the cardiac cell is unable to initiate another action potential for some duration of time (which is slightly shorter than the "true" action potential duration).

  9. Cardiac physiology - Wikipedia

    en.wikipedia.org/wiki/Cardiac_physiology

    Cardiac muscle tissue has autorhythmicity, the unique ability to initiate a cardiac action potential at a fixed rate – spreading the impulse rapidly from cell to cell to trigger the contraction of the entire heart. This autorhythmicity is still modulated by the endocrine and nervous systems. [1]