enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    The stability function of an explicit RungeKutta method is a polynomial, so explicit RungeKutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    The RungeKutta–Fehlberg method has two methods of orders 5 and 4; it is sometimes dubbed RKF45 . Its extended Butcher Tableau is: / / / / / / / / / / / / / / / / / / / / / / / / / / The first row of b coefficients gives the fifth-order accurate solution, and the second row has order four.

  4. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    In mathematics, the RungeKutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of RungeKutta methods .

  5. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    Numerical methods for solving first-order IVPs often fall into one of two large categories: [5] linear multistep methods, or RungeKutta methods.A further division can be realized by dividing methods into those that are explicit and those that are implicit.

  6. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_method_(SDE)

    In mathematics of stochastic systems, the RungeKutta method is a technique for the approximate numerical solution of a stochastic differential equation. It is a generalisation of the RungeKutta method for ordinary differential equations to stochastic differential equations (SDEs). Importantly, the method does not involve knowing ...

  7. Numerical integration - Wikipedia

    en.wikipedia.org/wiki/Numerical_integration

    Numerical methods for ordinary differential equations, such as RungeKutta methods, can be applied to the restated problem and thus be used to evaluate the integral. For instance, the standard fourth-order RungeKutta method applied to the differential equation yields Simpson's rule from above.

  8. Butcher group - Wikipedia

    en.wikipedia.org/wiki/Butcher_group

    In mathematics, the Butcher group, named after the New Zealand mathematician John C. Butcher by Hairer & Wanner (1974), is an infinite-dimensional Lie group [1] first introduced in numerical analysis to study solutions of non-linear ordinary differential equations by the RungeKutta method.

  9. General linear methods - Wikipedia

    en.wikipedia.org/wiki/General_linear_methods

    They include multistage RungeKutta methods that use intermediate collocation points, as well as linear multistep methods that save a finite time history of the solution. John C. Butcher originally coined this term for these methods and has written a series of review papers, [1] [2] [3] a book chapter, [4] and a textbook [5] on the topic.