enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_methods

    The stability function of an explicit Runge–Kutta method is a polynomial, so explicit Runge–Kutta methods can never be A-stable. [32] If the method has order p, then the stability function satisfies () = + (+) as . Thus, it is of interest to study quotients of polynomials of given degrees that approximate the exponential function the best.

  3. List of Runge–Kutta methods - Wikipedia

    en.wikipedia.org/wiki/List_of_RungeKutta_methods

    This Diagonally Implicit Runge–Kutta method is A-stable if and only if . Moreover, this method is L-stable if and only if x {\displaystyle x} equals one of the roots of the polynomial x 22 x + 1 2 {\textstyle x^{2}-2x+{\frac {1}{2}}} , i.e. if x = 1 ± 2 2 {\textstyle x=1\pm {\frac {\sqrt {2}}{2}}} .

  4. Runge–Kutta method (SDE) - Wikipedia

    en.wikipedia.org/wiki/RungeKutta_method_(SDE)

    A newer Runge—Kutta scheme also of strong order 1 straightforwardly reduces to the improved Euler scheme for deterministic ODEs. [2] Consider the vector stochastic process () that satisfies the general Ito SDE = (,) + (,), where drift and volatility are sufficiently smooth functions of their arguments.

  5. Heun's method - Wikipedia

    en.wikipedia.org/wiki/Heun's_method

    In mathematics and computational science, Heun's method may refer to the improved [1] or modified Euler's method (that is, the explicit trapezoidal rule [2]), or a similar two-stage Runge–Kutta method. It is named after Karl Heun and is a numerical procedure for solving ordinary differential equations (ODEs) with a given initial value.

  6. Numerical methods for ordinary differential equations

    en.wikipedia.org/wiki/Numerical_methods_for...

    1895 - Carl Runge publishes the first Runge–Kutta method. 1901 - Martin Kutta describes the popular fourth-order Runge–Kutta method. 1910 - Lewis Fry Richardson announces his extrapolation method, Richardson extrapolation. 1952 - Charles F. Curtiss and Joseph Oakland Hirschfelder coin the term stiff equations.

  7. Runge–Kutta–Fehlberg method - Wikipedia

    en.wikipedia.org/wiki/RungeKutta–Fehlberg...

    In mathematics, the Runge–Kutta–Fehlberg method (or Fehlberg method) is an algorithm in numerical analysis for the numerical solution of ordinary differential equations. It was developed by the German mathematician Erwin Fehlberg and is based on the large class of Runge–Kutta methods .

  8. Bogacki–Shampine method - Wikipedia

    en.wikipedia.org/wiki/Bogacki–Shampine_method

    The Bogacki–Shampine method is a Runge–Kutta method of order three with four stages with the First Same As Last (FSAL) property, so that it uses approximately three function evaluations per step. It has an embedded second-order method which can be used to implement adaptive step size.

  9. Gauss–Legendre method - Wikipedia

    en.wikipedia.org/wiki/Gauss–Legendre_method

    Gauss–Legendre methods are implicit Runge–Kutta methods. More specifically, they are collocation methods based on the points of Gauss–Legendre quadrature. The Gauss–Legendre method based on s points has order 2s. [1] All Gauss–Legendre methods are A-stable. [2] The Gauss–Legendre method of order two is the implicit midpoint rule.