enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iterative deepening A* - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_A*

    Iterative deepening A* (IDA*) is a graph traversal and path search algorithm that can find the shortest path between a designated start node and any member of a set of goal nodes in a weighted graph. It is a variant of iterative deepening depth-first search that borrows the idea to use a heuristic function to conservatively estimate the ...

  3. Iterative deepening depth-first search - Wikipedia

    en.wikipedia.org/wiki/Iterative_deepening_depth...

    Iterative deepening prevents this loop and will reach the following nodes on the following depths, assuming it proceeds left-to-right as above: 0: A; 1: A, B, C, E (Iterative deepening has now seen C, when a conventional depth-first search did not.) 2: A, B, D, F, C, G, E, F (It still sees C, but that it came later.

  4. MTD(f) - Wikipedia

    en.wikipedia.org/wiki/MTD(f)

    MTD(f) is an alpha-beta game tree search algorithm modified to use ‘zero-window’ initial search bounds, and memory (usually a transposition table) to reuse intermediate search results. MTD(f) is a shortened form of MTD(n,f) which stands for Memory-enhanced Test Driver with node ‘n’ and value ‘f’. [ 1 ]

  5. Fringe search - Wikipedia

    en.wikipedia.org/wiki/Fringe_search

    In essence, fringe search is a middle ground between A* and the iterative deepening A* variant (IDA*). If g(x) is the cost of the search path from the first node to the current, and h(x) is the heuristic estimate of the cost from the current node to the goal, then ƒ(x) = g(x) + h(x), and h* is the actual path cost to the goal.

  6. Graph traversal - Wikipedia

    en.wikipedia.org/wiki/Graph_traversal

    The steps specified in the sequence are relative to the current node, not absolute. For example, if the current node is v j, and v j has d neighbors, then the traversal sequence will specify the next node to visit, v j+1, as the i th neighbor of v j, where 1 ≤ i ≤ d.

  7. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    For general graphs, replacing the stack of the iterative depth-first search implementation with a queue would also produce a breadth-first search algorithm, although a somewhat nonstandard one. [7] Another possible implementation of iterative depth-first search uses a stack of iterators of the list of neighbors of a node, instead of a stack of ...

  8. Principal variation search - Wikipedia

    en.wikipedia.org/wiki/Principal_variation_search

    In iterative deepening search, the previous iteration has already established a candidate for such a sequence, which is also commonly called the principal variation. For any non-leaf in this principal variation, its children are reordered such that the next node from this principal variation is the first child.

  9. Negamax - Wikipedia

    en.wikipedia.org/wiki/Negamax

    This complicates adding transposition table optimizations for negamax. It is insufficient to track only the node's value in the table, because value may not be the node's true value. The code therefore must preserve and restore the relationship of value with alpha/beta parameters and the search depth for each transposition table entry.