Search results
Results from the WOW.Com Content Network
x 1 = x; x 2 = x 2 for i = k - 2 to 0 do if n i = 0 then x 2 = x 1 * x 2; x 1 = x 1 2 else x 1 = x 1 * x 2; x 2 = x 2 2 return x 1. The algorithm performs a fixed sequence of operations (up to log n): a multiplication and squaring takes place for each bit in the exponent, regardless of the bit's specific value. A similar algorithm for ...
In computing, type introspection is the ability of a program to examine the type or properties of an object at runtime. Some programming languages possess this capability. Introspection should not be confused with reflection , which goes a step further and is the ability for a program to manipulate the metadata, properties, and functions of an ...
The result for the above examples would be (in reverse Polish notation) "3 4 +" and "3 4 2 1 − × +", respectively. The shunting yard algorithm will correctly parse all valid infix expressions, but does not reject all invalid expressions. For example, "1 2 +" is not a valid infix expression, but would be parsed as "1 + 2". The algorithm can ...
Modular exponentiation is the remainder when an integer b (the base) is raised to the power e (the exponent), and divided by a positive integer m (the modulus); that is, c = b e mod m. From the definition of division, it follows that 0 ≤ c < m. For example, given b = 5, e = 3 and m = 13, dividing 5 3 = 125 by 13 leaves a remainder of c = 8.
For example, addition and division, the factorial and exponential function, and the function which returns the nth prime are all primitive recursive. [1] In fact, for showing that a computable function is primitive recursive, it suffices to show that its time complexity is bounded above by a primitive recursive function of the input size. [ 2 ]
For example, John von Neumann constructs the number 0 as the empty set {}, and the successor of n, S(n), as the set n ∪ {n}. The axiom of infinity then guarantees the existence of a set that contains 0 and is closed with respect to S. The smallest such set is denoted by N, and its members are called natural numbers. [2]
Note: Most subscribers have some, but not all, of the puzzles that correspond to the following set of solutions for their local newspaper. CROSSWORDS
In mathematics, the hyperoperation sequence [nb 1] is an infinite sequence of arithmetic operations (called hyperoperations in this context) [1] [11] [13] that starts with a unary operation (the successor function with n = 0).