Search results
Results from the WOW.Com Content Network
In mathematics, an unordered pair or pair set is a set of the form {a, b}, i.e. a set having two elements a and b with no particular relation between them, where {a, b} = {b, a}. In contrast, an ordered pair (a, b) has a as its first element and b as its second element, which means (a, b) ≠ (b, a).
We can use the axiom of extensionality to show that this set C is unique. We call the set C the pair of A and B, and denote it {A,B}. Thus the essence of the axiom is: Any two objects have a pair. The set {A,A} is abbreviated {A}, called the singleton containing A. Note that a singleton is a special case of a pair.
In mathematics, an ordered pair, denoted (a, b), is a pair of objects in which their order is significant. The ordered pair (a, b) is different from the ordered pair (b, a), unless a = b. In contrast, the unordered pair, denoted {a, b}, always equals the unordered pair {b, a}.
A set of polygons in an Euler diagram This set equals the one depicted above since both have the very same elements.. In mathematics, a set is a collection of different [1] things; [2] [3] [4] these things are called elements or members of the set and are typically mathematical objects of any kind: numbers, symbols, points in space, lines, other geometrical shapes, variables, or even other ...
Theorem: If A and B are sets, then there is a set A×B which consists of all ordered pairs (a, b) of elements a of A and b of B. Proof: The singleton set with member a, written {a}, is the same as the unordered pair {a, a}, by the axiom of extensionality. The singleton, the set {a, b}, and then also the ordered pair
The term is commonly used in mathematics and computer science to refer to a listing of all of the elements of a set. The precise requirements for an enumeration (for example, whether the set must be finite , or whether the list is allowed to contain repetitions) depend on the discipline of study and the context of a given problem.
enumerate(S): returns a list containing the elements of S in some arbitrary order. build(x 1,x 2,…,x n,): creates a set structure with values x 1,x 2,...,x n. create_from(collection): creates a new set structure containing all the elements of the given collection or all the elements returned by the given iterator.
Unordered pair, or pair set, in mathematics and set theory; Ordered pair, or 2-tuple, in mathematics and set theory; Pairing, in mathematics, an R-bilinear map of modules, where R is the underlying ring; Pair type, in programming languages and type theory, a product type with two component types; Topological pair, an inclusion of topological spaces