Search results
Results from the WOW.Com Content Network
Decomposition method is a generic term for solutions of various problems and design of algorithms in which the basic idea is to decompose the problem into subproblems. The term may specifically refer to: Decomposition method (constraint satisfaction) in constraint satisfaction
In mathematics, a polynomial decomposition expresses a polynomial f as the functional composition of polynomials g and h, where g and h have degree greater than 1; it is an algebraic functional decomposition. Algorithms are known for decomposing univariate polynomials in polynomial time.
Lebesgue's decomposition theorem can be refined in a number of ways. First, the decomposition of a regular Borel measure on the real line can be refined: [4] = + + where ν cont is the absolutely continuous part; ν sing is the singular continuous part
The solutions to the sub-problems are then combined to give a solution to the original problem. The divide-and-conquer technique is the basis of efficient algorithms for many problems, such as sorting (e.g., quicksort , merge sort ), multiplying large numbers (e.g., the Karatsuba algorithm ), finding the closest pair of points , syntactic ...
In algebra, the partial fraction decomposition or partial fraction expansion of a rational fraction (that is, a fraction such that the numerator and the denominator are both polynomials) is an operation that consists of expressing the fraction as a sum of a polynomial (possibly zero) and one or several fractions with a simpler denominator.
A decomposition with local endomorphism rings [5] (cf. #Azumaya's theorem): a direct sum of modules whose endomorphism rings are local rings (a ring is local if for each element x, either x or 1 − x is a unit). Serial decomposition: a direct sum of uniserial modules (a module is uniserial if the lattice of submodules is a finite chain [6]).
Decomposition: This is a version of Schur decomposition where and only contain real numbers. One can always write A = V S V T {\displaystyle A=VSV^{\mathsf {T}}} where V is a real orthogonal matrix , V T {\displaystyle V^{\mathsf {T}}} is the transpose of V , and S is a block upper triangular matrix called the real Schur form .
Benders decomposition (or Benders' decomposition) is a technique in mathematical programming that allows the solution of very large linear programming problems that have a special block structure. This block structure often occurs in applications such as stochastic programming as the uncertainty is usually represented with scenarios.