enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Examples of data mining - Wikipedia

    en.wikipedia.org/wiki/Examples_of_data_mining

    This kind of data redundancy due to the spatial correlation between sensor observations inspires the techniques for in-network data aggregation and mining. By measuring the spatial correlation between data sampled by different sensors, a wide class of specialized algorithms can be developed to develop more efficient spatial data mining algorithms.

  3. Data mining - Wikipedia

    en.wikipedia.org/wiki/Data_mining

    Before data mining algorithms can be used, a target data set must be assembled. As data mining can only uncover patterns actually present in the data, the target data set must be large enough to contain these patterns while remaining concise enough to be mined within an acceptable time limit. A common source for data is a data mart or data ...

  4. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    This process of top-down induction of decision trees (TDIDT) [5] is an example of a greedy algorithm, and it is by far the most common strategy for learning decision trees from data. [ 6 ] In data mining , decision trees can be described also as the combination of mathematical and computational techniques to aid the description, categorization ...

  5. Sequential pattern mining - Wikipedia

    en.wikipedia.org/wiki/Sequential_Pattern_Mining

    Sequential pattern mining is a topic of data mining concerned with finding statistically relevant patterns between data examples where the values are delivered in a sequence. [ 1 ] [ 2 ] It is usually presumed that the values are discrete, and thus time series mining is closely related, but usually considered a different activity.

  6. List of algorithms - Wikipedia

    en.wikipedia.org/wiki/List_of_algorithms

    An algorithm is fundamentally a set of rules or defined procedures that is typically designed and used to solve a specific problem or a broad set of problems.. Broadly, algorithms define process(es), sets of rules, or methodologies that are to be followed in calculations, data processing, data mining, pattern recognition, automated reasoning or other problem-solving operations.

  7. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    Real mining problems would typically have more complex antecedents, but usually focus on single-value consequents. Most mining algorithms would determine the following rules (targeting models): Rule 1: A implies 0; Rule 2: B implies 1; because these are simply the most common patterns found in the data.

  8. k-means clustering - Wikipedia

    en.wikipedia.org/wiki/K-means_clustering

    Cluster analysis, a fundamental task in data mining and machine learning, involves grouping a set of data points into clusters based on their similarity. k -means clustering is a popular algorithm used for partitioning data into k clusters, where each cluster is represented by its centroid.

  9. List of datasets for machine-learning research - Wikipedia

    en.wikipedia.org/wiki/List_of_datasets_for...

    Data about cybersecurity strategies from more than 75 countries. Tokenization, meaningless-frequent words removal. [366] Yanlin Chen, Yunjian Wei, Yifan Yu, Wen Xue, Xianya Qin APT Reports collection Sample of APT reports, malware, technology, and intelligence collection Raw and tokenize data available. All data is available in this GitHub ...