enow.com Web Search

  1. Ads

    related to: schottky diode working principle model

Search results

  1. Results from the WOW.Com Content Network
  2. Schottky diode - Wikipedia

    en.wikipedia.org/wiki/Schottky_diode

    While standard silicon diodes have a forward voltage drop of about 0.7 V and germanium diodes 0.3 V, Schottky diodes' voltage drop at forward biases of around 1 mA is in the range of 0.15 V to 0.46 V (see the 1N5817 [6] and 1N5711 [7]), which makes them useful in voltage clamping applications and prevention of transistor saturation.

  3. Schottky barrier - Wikipedia

    en.wikipedia.org/wiki/Schottky_barrier

    A Schottky diode is a single metal–semiconductor junction, used for its rectifying properties. Schottky diodes are often the most suitable kind of diode when a low forward voltage drop is desired, such as in a high-efficiency DC power supply. Also, because of their majority-carrier conduction mechanism, Schottky diodes can achieve greater ...

  4. Metal–semiconductor junction - Wikipedia

    en.wikipedia.org/wiki/Metal–semiconductor_junction

    The Schottky diode, also known as the Schottky-barrier diode, was theorized for years, but was first practically realized as a result of the work of Atalla and Kahng during 1960–1961. [ 23 ] [ 24 ] They published their results in 1962 and called their device the "hot electron" triode structure with semiconductor-metal emitter. [ 25 ]

  5. Diode modelling - Wikipedia

    en.wikipedia.org/wiki/Diode_modelling

    When more accuracy is desired in modelling the diode's turn-on characteristic, the model can be enhanced by doubling-up the standard PWL-model. This model uses two piecewise-linear diodes in parallel, as a way to model a single diode more accurately. PWL Diode model with 2 branches. The top branch has a lower forward-voltage and a higher ...

  6. Band diagram - Wikipedia

    en.wikipedia.org/wiki/Band_diagram

    Band diagram for Schottky barrier at equilibrium Band diagram for semiconductor heterojunction at equilibrium In solid-state physics of semiconductors , a band diagram is a diagram plotting various key electron energy levels ( Fermi level and nearby energy band edges) as a function of some spatial dimension, which is often denoted x . [ 1 ]

  7. Schottky junction solar cell - Wikipedia

    en.wikipedia.org/wiki/Schottky_junction_solar_cell

    In a basic Schottky-junction (Schottky-barrier) solar cell, an interface between a metal and a semiconductor provides the band bending necessary for charge separation. [1] Traditional solar cells are composed of p-type and n-type semiconductor layers sandwiched together, forming the source of built-in voltage (a p-n junction ). [ 2 ]

  8. Diode - Wikipedia

    en.wikipedia.org/wiki/Diode

    This allows the diode to operate at higher signal frequencies, at the expense of a higher forward voltage drop. Gold-doped diodes are faster than other p–n diodes (but not as fast as Schottky diodes). They also have less reverse-current leakage than Schottky diodes (but not as good as other p–n diodes). [44] [45] A typical example is the 1N914.

  9. Rectenna - Wikipedia

    en.wikipedia.org/wiki/Rectenna

    The diode rectifies the AC induced in the antenna by the microwaves, to produce DC power, which powers a load connected across the diode. Schottky diodes are usually used because they have the lowest voltage drop and highest speed and therefore have the lowest power losses due to conduction and switching. [ 1 ]

  1. Ads

    related to: schottky diode working principle model