Ads
related to: examples of a linear relationship in algebra in real lifeeducator.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
In linear algebra, a linear relation, or simply relation, between elements of a vector space or a module is a linear equation that has these elements as a solution.. More precisely, if , …, are elements of a (left) module M over a ring R (the case of a vector space over a field is a special case), a relation between , …, is a sequence (, …,) of elements of R such that
In mathematics, the term linear is used in two distinct senses for two different properties: . linearity of a function (or mapping);; linearity of a polynomial.; An example of a linear function is the function defined by () = (,) that maps the real line to a line in the Euclidean plane R 2 that passes through the origin.
Linear algebra is the branch of mathematics ... There is a strong relationship between linear algebra and ... is a typical example of a real-world ...
Conversely, every line is the set of all solutions of a linear equation. The phrase "linear equation" takes its origin in this correspondence between lines and equations: a linear equation in two variables is an equation whose solutions form a line. If b ≠ 0, the line is the graph of the function of x that has been defined in the preceding ...
For example, "is a blood relative of" is a symmetric relation, because x is a blood relative of y if and only if y is a blood relative of x. Antisymmetric for all x, y ∈ X, if xRy and yRx then x = y. For example, ≥ is an antisymmetric relation; so is >, but vacuously (the condition in the definition is always false). [11] Asymmetric
In linear algebra, it is synonymous with a linear form, which is a linear mapping from a vector space into its field of scalars (that is, it is an element of the dual space) [1] In functional analysis and related fields, it refers to a mapping from a space X {\displaystyle X} into the field of real or complex numbers .
A famous example is the recurrence for the Fibonacci numbers, = + where the order is two and the linear function merely adds the two previous terms. This example is a linear recurrence with constant coefficients , because the coefficients of the linear function (1 and 1) are constants that do not depend on n . {\displaystyle n.}
In mathematics (including combinatorics, linear algebra, and dynamical systems), a linear recurrence with constant coefficients [1]: ch. 17 [2]: ch. 10 (also known as a linear recurrence relation or linear difference equation) sets equal to 0 a polynomial that is linear in the various iterates of a variable—that is, in the values of the elements of a sequence.
Ads
related to: examples of a linear relationship in algebra in real lifeeducator.com has been visited by 10K+ users in the past month