Search results
Results from the WOW.Com Content Network
The equations 3x + 2y = 6 and 3x + 2y = 12 are independent, because any constant times one of them fails to produce the other one. An independent equation is an equation in a system of simultaneous equations which cannot be derived algebraically from the other equations. [1] The concept typically arises in the context of linear equations.
In mathematics, an ordinary differential equation (ODE) is a differential equation (DE) dependent on only a single independent variable.As with any other DE, its unknown(s) consists of one (or more) function(s) and involves the derivatives of those functions. [1]
In mathematics, separation of variables (also known as the Fourier method) is any of several methods for solving ordinary and partial differential equations, in which algebra allows one to rewrite an equation so that each of two variables occurs on a different side of the equation.
An ordinary differential equation (ODE) is an equation containing an unknown function of one real or complex variable x, its derivatives, and some given functions of x. The unknown function is generally represented by a variable (often denoted y), which, therefore, depends on x. Thus x is often called the independent variable of the
It is particularly used when solving singularly perturbed differential equations. It involves finding several different approximate solutions, each of which is valid (i.e. accurate) for part of the range of the independent variable, and then combining these different solutions together to give a single approximate solution that is valid for the ...
, a vector in , are dependent variables for which no derivatives are present (algebraic variables), t {\displaystyle t} , a scalar (usually time) is an independent variable. F {\displaystyle F} is a vector of n + m {\displaystyle n+m} functions that involve subsets of these n + m + 1 {\displaystyle n+m+1} variables and n {\displaystyle n ...
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
Here the independent variable is the dose and the dependent variable is the frequency/intensity of symptoms. Effect of temperature on pigmentation: In measuring the amount of color removed from beetroot samples at different temperatures, temperature is the independent variable and amount of pigment removed is the dependent variable.