Search results
Results from the WOW.Com Content Network
If a pop operation on the stack causes the stack pointer to move past the origin of the stack, a stack underflow occurs. If a push operation causes the stack pointer to increment or decrement beyond the maximum extent of the stack, a stack overflow occurs. Some environments that rely heavily on stacks may provide additional operations, for example:
push 1L (the number one with type long) onto the stack ldc 12 0001 0010 1: index → value push a constant #index from a constant pool (String, int, float, Class, java.lang.invoke.MethodType, java.lang.invoke.MethodHandle, or a dynamically-computed constant) onto the stack ldc_w 13 0001 0011 2: indexbyte1, indexbyte2 → value
For example, Perl and Ruby allow pushing and popping an array from both ends, so one can use push and shift functions to enqueue and dequeue a list (or, in reverse, one can use unshift and pop), [2] although in some cases these operations are not efficient.
Pop word from stack and store in local variable ISUB N/A Pop two words from stack; subtract the top word from the second to top word, push the difference; LDC_W constant name Push constant from constant pool onto stack NOP N/A Do nothing OUT N/A Pop word off stack and print it to standard out POP N/A Delete word from top of stack SWAP N/A
A push operation decrements the pointer and copies the data to the stack; a pop operation copies data from the stack and then increments the pointer. Each procedure called in the program stores procedure return information (in yellow) and local data (in other colors) by pushing them onto the stack.
The Stack class extends class java.util.Vector with five operations that allow a Vector to be treated as a Stack. Stacks are created using java.util.Stack. The Stack offers methods to put a new object on the Stack (method push(E e)) and to get objects from the Stack (method pop()).
For example, a stack may have operations push(x) and pop(), that operate on the only existing stack. ADT definitions in this style can be easily rewritten to admit multiple coexisting instances of the ADT, by adding an explicit instance parameter (like S in the stack example below) to every operation that uses or modifies the implicit instance.
In computer science, a double-ended queue (abbreviated to deque, / d ɛ k / DEK [1]) is an abstract data type that generalizes a queue, for which elements can be added to or removed from either the front (head) or back (tail). [2]