enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Dilworth's theorem - Wikipedia

    en.wikipedia.org/wiki/Dilworth's_theorem

    An antichain in a partially ordered set is a set of elements no two of which are comparable to each other, and a chain is a set of elements every two of which are comparable. A chain decomposition is a partition of the elements of the order into disjoint chains. Dilworth's theorem states that, in any finite partially ordered set, the largest ...

  3. Sperner's theorem - Wikipedia

    en.wikipedia.org/wiki/Sperner's_theorem

    The family of all subsets of an n-element set (its power set) can be partially ordered by set inclusion; in this partial order, two distinct elements are said to be incomparable when neither of them contains the other. The width of a partial order is the largest number of elements in an antichain, a set of pairwise incomparable elements ...

  4. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    Then (↓ x) u is the set of elements greater than or equal to x, and ((↓ x) u) l = ↓ x, showing that ↓ x is indeed a member of the completion. The mapping from x to ↓ x is an order-embedding. [7] An alternative definition of the Dedekind–MacNeille completion that more closely resembles the definition of a Dedekind cut is sometimes ...

  5. Antichain - Wikipedia

    en.wikipedia.org/wiki/Antichain

    An antichain in is a subset of in which each pair of different elements is incomparable; that is, there is no order relation between any two different elements in . (However, some authors use the term "antichain" to mean strong antichain , a subset such that there is no element of the poset smaller than two distinct elements of the antichain.)

  6. Antimatroid - Wikipedia

    en.wikipedia.org/wiki/Antimatroid

    Three views of an antimatroid: an inclusion ordering on its family of feasible sets, a formal language, and the corresponding path poset. In mathematics, an antimatroid is a formal system that describes processes in which a set is built up by including elements one at a time, and in which an element, once available for inclusion, remains available until it is included. [1]

  7. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    If the number 1 is excluded, while keeping divisibility as ordering on the elements greater than 1, then the resulting poset does not have a least element, but any prime number is a minimal element for it. In this poset, 60 is an upper bound (though not a least upper bound) of the subset {,,,}, which does not have any lower bound (since 1 is ...

  8. Order theory - Wikipedia

    en.wikipedia.org/wiki/Order_theory

    Now there are also elements of a poset that are special with respect to some subset of the order. This leads to the definition of upper bounds. Given a subset S of some poset P, an upper bound of S is an element b of P that is above all elements of S. Formally, this means that s ≤ b, for all s in S. Lower bounds again are defined by inverting ...

  9. Hasse diagram - Wikipedia

    en.wikipedia.org/wiki/Hasse_diagram

    The first diagram makes clear that the power set is a graded poset.The second diagram has the same graded structure, but by making some edges longer than others, it emphasizes that the 4-dimensional cube is a combinatorial union of two 3-dimensional cubes, and that a tetrahedron (abstract 3-polytope) likewise merges two triangles (abstract 2-polytopes).