enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Laplace_operator

    The vector Laplace operator, also denoted by , is a differential operator defined over a vector field. [7] The vector Laplacian is similar to the scalar Laplacian; whereas the scalar Laplacian applies to a scalar field and returns a scalar quantity, the vector Laplacian applies to a vector field, returning a vector quantity.

  3. Vector calculus identities - Wikipedia

    en.wikipedia.org/wiki/Vector_calculus_identities

    Another method of deriving vector and tensor derivative identities is to replace all occurrences of a vector in an algebraic identity by the del operator, provided that no variable occurs both inside and outside the scope of an operator or both inside the scope of one operator in a term and outside the scope of another operator in the same term ...

  4. Laplacian vector field - Wikipedia

    en.wikipedia.org/wiki/Laplacian_vector_field

    The Laplacian vector field theory is being used in research in mathematics and medicine. Math researchers study the boundary values for Laplacian vector fields and investigate an innovative approach where they assume the surface is fractal and then must utilize methods for calculating a well-defined integration over the boundary. [5]

  5. Laplace operators in differential geometry - Wikipedia

    en.wikipedia.org/wiki/Laplace_operators_in...

    The Bochner Laplacian is defined differently from the connection Laplacian, but the two will turn out to differ only by a sign, whenever the former is defined. Let M be a compact, oriented manifold equipped with a metric. Let E be a vector bundle over M equipped with a fiber metric and a compatible connection, . This connection gives rise to a ...

  6. Green's identities - Wikipedia

    en.wikipedia.org/wiki/Green's_identities

    This identity is derived from the divergence theorem applied to the vector field F = ψ ∇φ while using an extension of the product rule that ∇ ⋅ (ψ X) = ∇ψ ⋅X + ψ ∇⋅X: Let φ and ψ be scalar functions defined on some region U ⊂ R d, and suppose that φ is twice continuously differentiable, and ψ is once continuously differentiable.

  7. Laplace–Beltrami operator - Wikipedia

    en.wikipedia.org/wiki/Laplace–Beltrami_operator

    The spherical Laplacian is the Laplace–Beltrami operator on the (n − 1)-sphere with its canonical metric of constant sectional curvature 1. It is convenient to regard the sphere as isometrically embedded into R n as the unit sphere centred at the origin. Then for a function f on S n−1, the spherical Laplacian is defined by

  8. Discrete Laplace operator - Wikipedia

    en.wikipedia.org/wiki/Discrete_Laplace_operator

    That is, can be written as a column vector; and so is the product of the column vector and the Laplacian matrix, while () is just the v'th entry of the product vector. If the graph has weighted edges, that is, a weighting function γ : E → R {\displaystyle \gamma \colon E\to R} is given, then the definition can be generalized to

  9. Tensors in curvilinear coordinates - Wikipedia

    en.wikipedia.org/wiki/Tensors_in_curvilinear...

    In orthogonal curvilinear coordinates of 3 dimensions, where = ; = = one can express the gradient of a scalar or vector field as = = = ; = For an orthogonal basis = = = The divergence of a vector field can then be written as = ( ) Also, = = = ; = = ; = = Therefore, = ( ) We can get an expression for the Laplacian in a similar manner by noting ...