Search results
Results from the WOW.Com Content Network
The area under the effect curve (AUEC) is an integral of the effect of a drug over time, estimated as a previously-established function of concentration. It was proposed to be used instead of AUC in animal-to-human dose translation, as computer simulation shows that it could cope better with half-life and dosing schedule variations than AUC.
Simpson's rules are a set of rules used in ship stability and naval architecture, to calculate the areas and volumes of irregular figures. [1] This is an application of Simpson's rule for finding the values of an integral, here interpreted as the area under a curve. Simpson's First Rule
The AUC (area under the curve) of the ROC curve reflects the overall accuracy and the separation performance of the biomarker (or biomarkers), [3] and can be readily used to compare different biomarker combinations or models. [4] As a rule of thumb, the fewer the biomarkers that one uses to maximize the AUC of the ROC curve, the better.
This method was further developed and employed by Archimedes in the 3rd century BC and used to calculate the area of a circle, the surface area and volume of a sphere, area of an ellipse, the area under a parabola, the volume of a segment of a paraboloid of revolution, the volume of a segment of a hyperboloid of revolution, and the area of a ...
The area of the surface of a sphere is equal to quadruple the area of a great circle of this sphere. The area of a segment of the parabola cut from it by a straight line is 4/3 the area of the triangle inscribed in this segment. For the proof of the results Archimedes used the Method of exhaustion of Eudoxus.
The main criticism to the ROC curve described in these studies regards the incorporation of areas with low sensitivity and low specificity (both lower than 0.5) for the calculation of the total area under the curve (AUC)., [19] as described in the plot on the right.
This can also be seen from the geometric picture: the trapezoids include all of the area under the curve and extend over it. Similarly, a concave-down function yields an underestimate because area is unaccounted for under the curve, but none is counted above. If the interval of the integral being approximated includes an inflection point, the ...
While the Riemann integral considers the area under a curve as made out of vertical rectangles, the Lebesgue definition considers horizontal slabs that are not necessarily just rectangles, and so it is more flexible. For this reason, the Lebesgue definition makes it possible to calculate integrals for a broader class of functions.