Search results
Results from the WOW.Com Content Network
Nonelementary integral. In mathematics, a nonelementary antiderivative of a given elementary function is an antiderivative (or indefinite integral) that is, itself, not an elementary function. [1] A theorem by Liouville in 1835 provided the first proof that nonelementary antiderivatives exist. [2] This theorem also provides a basis for the ...
More detail may be found on the following pages for the lists of integrals: Gradshteyn, Ryzhik, Geronimus, Tseytlin, Jeffrey, Zwillinger, and Moll 's (GR) Table of Integrals, Series, and Products contains a large collection of results. An even larger, multivolume table is the Integrals and Series by Prudnikov, Brychkov, and Marichev (with ...
In mathematics, an integral is the continuous analog of a sum, which is used to calculate areas, volumes, and their generalizations. Integration, the process of computing an integral, is one of the two fundamental operations of calculus, [a] the other being differentiation. Integration was initially used to solve problems in mathematics and ...
List of unsolved problems in mathematics. Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory ...
Calculus is the mathematical study of continuous change, in the same way that geometry is the study of shape, and algebra is the study of generalizations of arithmetic operations. Originally called infinitesimal calculus or "the calculus of infinitesimals ", it has two major branches, differential calculus and integral calculus.
v. t. e. The fundamental theorem of calculus is a theorem that links the concept of differentiating a function (calculating its slopes, or rate of change at each point in time) with the concept of integrating a function (calculating the area under its graph, or the cumulative effect of small contributions). Roughly speaking, the two operations ...
calculus. (From Latin calculus, literally 'small pebble', used for counting and calculations, as on an abacus) [8] is the mathematical study of continuous change, in the same way that geometry is the study of shape and algebra is the study of generalizations of arithmetic operations.
Calculus. In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation, and can loosely be thought of as using the chain rule "backwards."