Search results
Results from the WOW.Com Content Network
In mathematics, the annihilator method is a procedure used to find a particular solution to certain types of non-homogeneous ordinary differential equations (ODEs). [1] It is similar to the method of undetermined coefficients, but instead of guessing the particular solution in the method of undetermined coefficients, the particular solution is determined systematically in this technique.
A particular solution is derived from the general solution by setting the constants to particular values, often chosen to fulfill set 'initial conditions or boundary conditions'. [22] A singular solution is a solution that cannot be obtained by assigning definite values to the arbitrary constants in the general solution.
If a term in the above particular integral for y appears in the homogeneous solution, it is necessary to multiply by a sufficiently large power of x in order to make the solution independent. If the function of x is a sum of terms in the above table, the particular integral can be guessed using a sum of the corresponding terms for y. [1]
Numerical methods for ordinary differential equations are methods used to find numerical approximations to the solutions of ordinary differential equations (ODEs). Their use is also known as "numerical integration", although this term can also refer to the computation of integrals. Many differential equations cannot be solved exactly.
When the non-homogeneous term is expressed as an exponential function, the ERF method or the undetermined coefficients method can be used to find a particular solution. If non-homogeneous terms can not be transformed to complex exponential function, then the Lagrange method of variation of parameters can be used to find solutions.
To solve this particular ordinary differential equation system, at some point in the solution process, we shall need a set of two initial values (corresponding to the two state variables at the starting point). In this case, let us pick x(0) = y(0) = 1.
The study of these differential equations with constant coefficients dates back to Leonhard Euler, who introduced the exponential function e x, which is the unique solution of the equation f′ = f such that f(0) = 1. It follows that the n th derivative of e cx is c n e cx, and this allows solving homogeneous linear differential equations ...
A singular solution y s (x) of an ordinary differential equation is a solution that is singular or one for which the initial value problem (also called the Cauchy problem by some authors) fails to have a unique solution at some point on the solution. The set on which a solution is singular may be as small as a single point or as large as the ...