Search results
Results from the WOW.Com Content Network
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
An example application of the Fourier transform is determining the constituent pitches in a musical waveform.This image is the result of applying a constant-Q transform (a Fourier-related transform) to the waveform of a C major piano chord.
The modulus of the number is the amplitude of that component, and the argument is the relative phase of the wave. For example, using the Fourier transform, a sound wave, such as human speech, can be broken down into its component tones of different frequencies, each represented by a sine wave of a different amplitude and phase. The response of ...
List of Fourier-related transforms; Fourier transform on finite groups; Fractional Fourier transform; Continuous Fourier transform; Fourier operator; Fourier inversion theorem; Sine and cosine transforms; Parseval's theorem; Paley–Wiener theorem; Projection-slice theorem; Frequency spectrum
Spectrum continuation analysis (SCA) is a generalization of the concept of Fourier series to non-periodic functions of which only a fragment has been sampled in the time domain. Recall that a Fourier series is only suitable to the analysis of periodic (or finite-domain) functions f(x) with period 2π. It can be expressed as an infinite series ...
The inverse transform, known as Fourier series, is a representation of () in terms of a summation of a potentially infinite number of harmonically related sinusoids or complex exponential functions, each with an amplitude and phase specified by one of the coefficients:
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
SigSpec (acronym of SIGnificance SPECtrum) is a statistical technique to provide the reliability of periodicities in a measured (noisy and not necessarily equidistant) time series. [1] It relies on the amplitude spectrum obtained by the Discrete Fourier transform (DFT) and assigns a quantity called the spectral significance (frequently ...