enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourier analysis - Wikipedia

    en.wikipedia.org/wiki/Fourier_analysis

    A number of authors, notably Jean le Rond d'Alembert, and Carl Friedrich Gauss used trigonometric series to study the heat equation, [20] but the breakthrough development was the 1807 paper Mémoire sur la propagation de la chaleur dans les corps solides by Joseph Fourier, whose crucial insight was to model all functions by trigonometric series ...

  3. Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Fourier_transform

    The component frequencies, extended for the whole frequency spectrum, are shown as peaks in the domain of the frequency. ... can be determined by Fourier series ...

  4. Frequency domain - Wikipedia

    en.wikipedia.org/wiki/Frequency_domain

    The "spectrum" of frequency components is the frequency-domain representation of the signal. The inverse Fourier transform converts the frequency-domain function back to the time-domain function. A spectrum analyzer is a tool commonly used to visualize electronic signals in the frequency domain.

  5. Fourier series - Wikipedia

    en.wikipedia.org/wiki/Fourier_series

    The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are well understood. For example, Fourier series were first used by Joseph Fourier to find solutions to the heat equation. This ...

  6. Chirp spectrum - Wikipedia

    en.wikipedia.org/wiki/Chirp_spectrum

    The spectrum of a chirp pulse describes its characteristics in terms of its frequency components. This frequency-domain representation is an alternative to the more familiar time-domain waveform, and the two versions are mathematically related by the Fourier transform.

  7. List of Fourier-related transforms - Wikipedia

    en.wikipedia.org/wiki/List_of_Fourier-related...

    These are called Fourier series coefficients. The term Fourier series actually refers to the inverse Fourier transform, which is a sum of sinusoids at discrete frequencies, weighted by the Fourier series coefficients. When the non-zero portion of the input function has finite duration, the Fourier transform is continuous and finite-valued.

  8. Discrete-time Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Discrete-time_Fourier...

    This Fourier series (in frequency) is a continuous periodic function, whose periodicity is the sampling frequency /. The subscript 1 / T {\displaystyle 1/T} distinguishes it from the continuous Fourier transform S ( f ) {\displaystyle S(f)} , and from the angular frequency form of the DTFT.

  9. Time–frequency analysis - Wikipedia

    en.wikipedia.org/wiki/Time–frequency_analysis

    Whereas the technique of the Fourier transform can be extended to obtain the frequency spectrum of any slowly growing locally integrable signal, this approach requires a complete description of the signal's behavior over all time. Indeed, one can think of points in the (spectral) frequency domain as smearing together information from across the ...