enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Euler–Rodrigues formula - Wikipedia

    en.wikipedia.org/wiki/Euler–Rodrigues_formula

    The composition of two rotations is itself a rotation. Let (a 1, b 1, c 1, d 1) and (a 2, b 2, c 2, d 2) be the Euler parameters of two rotations. The parameters for the compound rotation (rotation 2 after rotation 1) are as follows:

  3. Rotation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rotation_(mathematics)

    Whereas SO(3) rotations, in physics and astronomy, correspond to rotations of celestial sphere as a 2-sphere in the Euclidean 3-space, Lorentz transformations from SO(3;1) + induce conformal transformations of the celestial sphere. It is a broader class of the sphere transformations known as Möbius transformations.

  4. Rotation formalisms in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Rotation_formalisms_in...

    Rotation formalisms are focused on proper (orientation-preserving) motions of the Euclidean space with one fixed point, that a rotation refers to.Although physical motions with a fixed point are an important case (such as ones described in the center-of-mass frame, or motions of a joint), this approach creates a knowledge about all motions.

  5. Quaternions and spatial rotation - Wikipedia

    en.wikipedia.org/wiki/Quaternions_and_spatial...

    3D visualization of a sphere and a rotation about an Euler axis (^) by an angle of In 3-dimensional space, according to Euler's rotation theorem, any rotation or sequence of rotations of a rigid body or coordinate system about a fixed point is equivalent to a single rotation by a given angle about a fixed axis (called the Euler axis) that runs through the fixed point. [6]

  6. Euler's rotation theorem - Wikipedia

    en.wikipedia.org/wiki/Euler's_rotation_theorem

    It also means that the composition of two rotations is also a rotation. Therefore the set of rotations has a group structure, known as a rotation group. The theorem is named after Leonhard Euler, who proved it in 1775 by means of spherical geometry. The axis of rotation is known as an Euler axis, typically represented by a unit vector ê.

  7. Euler angles - Wikipedia

    en.wikipedia.org/wiki/Euler_angles

    The space of rotations is called in general "The Hypersphere of rotations", though this is a misnomer: the group Spin(3) is isometric to the hypersphere S 3, but the rotation space SO(3) is instead isometric to the real projective space RP 3 which is a 2-fold quotient space of the hypersphere.

  8. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞, (x, 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  9. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    [1] By definition, a rotation about the origin is a transformation that preserves the origin, Euclidean distance (so it is an isometry), and orientation (i.e., handedness of space). Composing two rotations results in another rotation, every rotation has a unique inverse rotation, and the identity map satisfies the